Fail to run gemm_bench with Problem size (2,2,2) (4,4,4) (8,8,8)
Opened this issue · 0 comments
LeiWang1999 commented
Hi there, I'm currently benchmarking gemm perfomance of amos on tensorcore, I modified the mapping_gemm_tensorcore
as below:
import tvm
import os
from tvm import auto_tensorize as at
import argparse
def gemm(M, N, K, in_dtype, out_dtype):
A = tvm.te.placeholder([M, K], dtype=in_dtype, name="A")
B = tvm.te.placeholder([K, N], dtype=in_dtype, name="B")
rk = tvm.te.reduce_axis([0, K], name="k")
C = tvm.te.compute(
[M, N], lambda i, j: tvm.te.sum((A[i, rk] * B[rk, j]).astype(out_dtype), axis=rk), name="C"
)
return [A, B, C]
def mapping_tensorcore(
M,
N,
K,
layer,
in_dtype,
out_dtype,
simple_mode=True,
trials=-1,
verbose=False,
use_perf_model=False,
perf_model_ratio=0.6,
):
A, B, Gemm = gemm(M, N, K, in_dtype, out_dtype)
target_dag = at.compute_dag_from_tensors([Gemm])
target = "cuda"
log_dir = "gemm-%s-%s-layer-%s" % (in_dtype, out_dtype, layer)
log_file = "gemm-%s-%s-layer-%s.log" % (in_dtype, out_dtype, layer)
measure_opt = at.MeasureOptions(target=target, timeout=100, number=200, min_repeat_ms=500)
if simple_mode:
trials = 1000 if trials < 0 else trials
result = at.auto_tensorize(
target_dag, target, log_file, measure_opt, trials=trials, verbose=verbose
)
if not result.defined():
print("Can't do tensorize.")
return
schedule_gen = result.sch_gen
schedule_app = result.sch_app
# load from file
schedule_gen.load_from_file(log_file, clear=True)
entry = schedule_gen.get_best_entry()
# we store 1/time_cost in file
params, value = entry.record, 1 / entry.value
print(value)
print(params.to_json())
else:
trials = 4000 if trials < 0 else trials
result = at.auto_tensorize_v4(
target_dag,
target,
log_file,
measure_opt,
schedule_log_dir=log_dir,
trials=trials,
search_group_size=5,
transform_dump=verbose,
enable_perf_model=use_perf_model,
perf_percentage=perf_model_ratio,
)
if not result.defined():
print("Can't do tensorize.")
return
schedule_gen = result.sch_gen
schedule_app = result.sch_app
# we store 1/time_cost in file
params, value = result.params, result.perf
print(value)
print(params.to_json())
cost = at.evaluate_params(schedule_app, params, measure_opt, dump=verbose)
print("Cost of %s is %f ms" % (log_dir, cost))
return cost
shapes = [(16, 512, 128), (1024, 16, 256), (256, 1024, 256), (512, 256, 16), (1024, 1024, 1024)]
supported_dtypes = set(
[
("float16", "float16"),
("float16", "float32"),
("bfloat16", "float32"),
("float32", "float32"),
("float64", "float64"),
("int4", "int32"),
("int8", "int32"),
]
)
example_text = """
example:
python mapping_gemm_tensorcore.py --in_dtype float16 --out_dtype float16 --begin 0 --num 1 --trials 20
python mapping_gemm_tensorcore.py --in_dtype float16 --out_dtype float32 --begin 0 --num 1 --trials 20
python mapping_gemm_tensorcore.py --in_dtype float32 --out_dtype float32 --begin 0 --num 1 --trials 20
python mapping_gemm_tensorcore.py --in_dtype float16 --out_dtype float16 --begin 0 --num 1 --trials 400 --simple_mode 0
"""
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="base_maker",
description="template maker",
epilog=example_text,
formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.add_argument(
"--in_dtype",
type=str,
choices=["float16", "float32", "float64", "bfloat16", "int4", "int8"],
default="float16",
)
parser.add_argument(
"--out_dtype",
type=str,
choices=["float16", "float32", "float64", "int32"],
default="float16",
)
parser.add_argument("--begin", type=int, choices=list(range(len(shapes))), default=0)
parser.add_argument(
"--num", type=int, choices=list(range(1, len(shapes) + 1)), default=len(shapes)
)
parser.add_argument("--simple_mode", type=int, default=1, choices=[0, 1])
parser.add_argument("--trials", type=int, default=-1)
parser.add_argument("--verbose", action="store_true")
parser.add_argument("--use_perf_model", action="store_true")
parser.add_argument("--perf_model_ratio", type=float, default=0.6)
args = parser.parse_args()
assert 0 < args.perf_model_ratio <= 1.0
if args.use_perf_model:
assert args.simple_mode == 0, "Performance model is only supported without simple_mode"
beg = args.begin
num = args.num
print(args.simple_mode)
assert (
args.in_dtype,
args.out_dtype,
) in supported_dtypes, (
f"The desired dtype pair {(args.in_dtype, args.out_dtype)} is not supported by Tensor Core."
)
costs = []
for i, shape in enumerate(shapes[beg : beg + num]):
(M, N, K) = shape
print("\n\nProblem size:")
print(M, N, K)
layer_name = f"({M}, {N}, {K})"
try:
cost = mapping_tensorcore(
M,
N,
K,
layer_name,
args.in_dtype,
args.out_dtype,
simple_mode=args.simple_mode,
trials=args.trials,
verbose=args.verbose,
use_perf_model=args.use_perf_model,
perf_model_ratio=args.perf_model_ratio,
)
costs.append(cost)
except Exception as e:
print("Fail to run\n", str(e))
costs.append(float("inf"))
for cost in costs:
print(cost)
just with shaped customized, but this bench throw a Fail to run
error.
0
Problem size:
2 2 2
Possible matchings:
0 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:nnn, shape:16x16x16)
1 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:nnn, shape:32x8x16)
2 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:nnn, shape:8x32x16)
3 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ntn, shape:16x16x16)
4 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ntn, shape:32x8x16)
5 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ntn, shape:8x32x16)
6 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:tnn, shape:16x16x16)
7 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:tnn, shape:32x8x16)
8 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:tnn, shape:8x32x16)
9 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ttn, shape:16x16x16)
10 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ttn, shape:32x8x16)
11 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ttn, shape:8x32x16)
Logging to devnull...
Totally 1 different mappings for this matching
Logging to devnull...
Totally 1 different mappings for this matching
Catch an infeasible mapping:
{"vmap": [[1], -1]}
Fail to run
Problem size:
4 4 4
Possible matchings:
0 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:nnn, shape:16x16x16)
1 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:nnn, shape:32x8x16)
2 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:nnn, shape:8x32x16)
3 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ntn, shape:16x16x16)
4 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ntn, shape:32x8x16)
5 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ntn, shape:8x32x16)
6 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:tnn, shape:16x16x16)
7 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:tnn, shape:32x8x16)
8 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:tnn, shape:8x32x16)
9 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ttn, shape:16x16x16)
10 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ttn, shape:32x8x16)
11 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ttn, shape:8x32x16)
Logging to devnull...
Totally 1 different mappings for this matching
Logging to devnull...
Totally 1 different mappings for this matching
Catch an infeasible mapping:
{"vmap": [[1], -1]}
Fail to run
Problem size:
8 8 8
Possible matchings:
0 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:nnn, shape:16x16x16)
1 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:nnn, shape:32x8x16)
2 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:nnn, shape:8x32x16)
3 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ntn, shape:16x16x16)
4 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ntn, shape:32x8x16)
5 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ntn, shape:8x32x16)
6 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:tnn, shape:16x16x16)
7 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:tnn, shape:32x8x16)
8 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:tnn, shape:8x32x16)
9 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ttn, shape:16x16x16)
10 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ttn, shape:32x8x16)
11 : MatchResult(hw_abs_dag:wmma_fp16_fp16, compute:ttn, shape:8x32x16)
Logging to devnull...
Totally 1 different mappings for this matching
Logging to devnull...
Totally 1 different mappings for this matching
Catch an infeasible mapping:
{"vmap": [[1], -1]}
Fail to run
but (16, 16, 16) can do well, any suggestions?