A lightweight, frontend-only, multi-page static site introducing core machine learning concepts—learning paradigms, algorithms, model evaluation, and future trends—using HTML5 and CSS3 (no build step).
- Live demo: https://www.r-siddiq.tech/ML-Info-Frontend/
- Additonal context: https://www.rsiddiq.com/internet-programming.html
- Scope: Frontend-only, static content
- Tech: HTML5, CSS3
- index.html – Overview of machine learning and key learning paradigms.
- algorithms.html – Survey of common ML algorithms across paradigms with an illustrative code snippet.
- evaluation.html – Model evaluation metrics (classification/regression) and validation strategies.
- future.html – Trends like Transformers, Generative AI, and Quantum ML.
- Static, no-build: open
index.htmldirectly—no tooling or server required. - Consistent navigation across pages.
- Responsive images via CSS (
max-width: 100%) and viewport meta tag. - Accessible alt text on images.
- Academic context: created for an Internet Programming course; content is educational.
ML-Info-Frontend/
├─ index.html, algorithms.html, evaluation.html, future.html
├─ css/
│ └─ styles.css
└─ img/
└─ confusion_matrix.jpg, future_ml.jpg, headshot.jpg, kfold_cv.jpg, reinforcement_learning.jpg, supervised_learning.jpg, unsupervised_learning.jpg
Double-click index.html in any modern browser.
Some browsers throttle local assets. Use a simple local server:
-
Python 3
python -m http.server
Visit http://localhost:8000/
-
Node (npx)
npx http-server .Follow the printed URL.
- scikit-learn: https://scikit-learn.org
- IBM ML overview: https://www.ibm.com/topics/machine-learning
- WEF on Quantum ML: https://www.weforum.org/agenda/2022/06/quantum-machine-learning-cybersecurity/
- “Attention is All You Need” (Transformer): https://arxiv.org/abs/1706.03762