Easy benchmarking of machine learning models with sklearn interface with statistical tests built-in.
Train, test, and evaluate models on multiple loss functions. Full result tables with error bars and significance tests are a one-liner for sklearn compatible objects. The design is documented in a workshop paper and poster.
Only Python>=3.5
is officially supported, but older versions of Python likely work as well.
The core package itself can be installed with:
pip install mlpaper
To also get the dependencies for the demos in the README install with
pip install mlpaper[demo]
See the GitHub, PyPI, and Read the Docs.
- Classification uses mlpaper.classification
- Regression uses mlpaper.regression
- We use Bayes' decision rule to convert a predictive distribution to an action for each loss function
- Objects just support methods
fit
andpredict_log_proba
(sklearn interface)
Modular pieces:
- The "do-it-all" just_benchmark calls 3 modular routines
- get_pred_log_prob: predictive distributions on each test point and model
- loss_table: the losses for each prediction
- loss_summary_table: mean loss for each method and error bars/p-values
- Publishable results: format a results dataframe for (LaTeX) publication
- Cleanly formatted: correct significant figures, shifting of exponent for compactness, and correct alignment of decimal points, units in headers
- Supports random, ordinal, or temporal splitting across features in pandas dataframes
- Jointly splitting across multiple features to test difficult generalization cases
Evaluation framework:
- Two metric types: loss functions and curve summaries
- Curve summaries: AUC for ROC, PR, and PRG
- Built-in proper scoring rules: log loss, Brier loss, spherical loss
- General loss matrices, and new metrics are easily added
- Non-probabilistic methods usable by pipelining a calibrator
Error bars and significance tests:
- Place confidence interval (CI) on mean loss of infinite test set from the same distribution
- Three options for CI in
loss_summary_table
: t-test, bootstrap, and Bernstein bound - The p-values are designed to match the error bars (via the 3 methods)
Error bars on curves:
- CI on raw curves (for plotting) and AUC (for tables) via bootstrap
- Vectorized bootstrap: reweight data points via multinomial distribution
- Avoids re-creating the data sets in memory (very slow)
First, we consider the plot_classifier_comparison.py
demo file. This extends
the standard sklearn classifier
comparison
but also demos the ease of mlpaper to create a performance
report.
The mlpaper package is meant to benchmark any model with any provided data set. However, in this demo, we use the example of the three toy data sets and ten classifiers from the sklearn example:
The mlpaper package can benchmark all of the of these methods and created a properly formatted LaTeX table (with error bars) in a few commands. This generates a results table for copy-and-paste into a ML paper .tex file in a few commands.
Pandas tables with the performance results of all the methods can be built by:
import mlpaper.classification as btc
from mlpaper.classification import STD_BINARY_CURVES, STD_CLASS_LOSS
performance_df, performance_curves_dict = btc.just_benchmark(
X_train,
y_train,
X_test,
y_test,
2,
classifiers,
STD_CLASS_LOSS,
STD_BINARY_CURVES,
ref_method,
)
This benchmarks all the models in classifiers on the data (X_train
,
y_train
, X_test
, y_test
) for 2-class classification. It uses
the loss function described in the dictionaries STD_CLASS_LOSS
, and
the curves (e.g., ROC, PR) in STD_BINARY_CURVES
. The ref_method
defines the model that is the reference to compare against for assessing
statistically significant performance gains.
The sciprint module formats these tables for scientific presentation. The performance dictionaries can be converted to cleanly formatted tables: correct significant figures, shifting of exponent for compactness, thresholding huge/small (crap limit) results, and correct alignment of decimal points, units in headers, etc. Here we use:
import mlpaper.sciprint as sp
print(
sp.just_format_it(
performance_df,
shift_mod=3,
unit_dict={"NLL": "nats"},
crap_limit_min={"AUPRG": -1},
EB_limit={"AUPRG": -1},
non_finite_fmt={sp.NAN_STR: "N/A"},
use_tex=False,
)
)
to export the results in plain text, or for LaTeX we use:
import mlpaper.sciprint as sp
print(
sp.just_format_it(
performance_df,
shift_mod=3,
unit_dict={"NLL": "nats"},
crap_limit_min={"AUPRG": -1},
EB_limit={"AUPRG": -1},
non_finite_fmt={sp.NAN_STR: "{--}"},
use_tex=True,
)
)
Here we show the input to just_format_it
(print(performance_df.to_string())
):
metric Brier NLL sphere zero_one AUC AP AUPRG stat mean error p mean error p mean error p mean error p mean error p mean error p mean error p method AdaBoost 0.415492 0.138707 1.386332e-10 0.368357 0.079299 2.946082e-10 0.363273 0.147183 7.040699e-11 0.075 0.085310 0.000008 0.949875 0.095655 0.0 0.933245 0.154225 0.0 0.904640 0.227702 0.0 Decision Tree 0.177778 0.242857 5.124429e-08 0.403857 0.701531 4.071101e-01 0.158944 0.218431 3.489955e-09 0.050 0.070590 0.000012 0.966165 0.071165 0.0 0.947368 0.123839 0.0 0.938596 0.154283 0.0 Gaussian Process 0.265248 0.160014 3.628068e-11 0.273804 0.104741 9.779350e-10 0.216574 0.154083 2.912358e-12 0.025 0.050567 0.000001 0.952381 0.105834 0.0 0.897840 0.224560 0.0 0.920814 0.198315 0.0 Linear SVM 0.334650 0.248373 3.153531e-06 0.282571 0.170047 1.720037e-05 0.311622 0.239091 8.783367e-07 0.125 0.107116 0.000116 0.949875 0.075188 0.0 0.951728 0.095365 0.0 0.887049 0.222059 0.0 Naive Bayes 0.339865 0.248629 3.457673e-06 0.282526 0.178926 3.465523e-05 0.313773 0.233882 5.719445e-07 0.125 0.107116 0.000116 0.957393 0.072682 0.0 0.957084 0.098593 0.0 0.897823 0.186842 0.0 Nearest Neighbors 0.177778 0.205603 1.064302e-09 0.416345 0.696712 4.240499e-01 0.148434 0.175058 8.504074e-12 0.025 0.050567 0.000001 0.968672 0.073935 0.0 0.944444 0.111111 0.0 0.934985 0.162257 0.0 Neural Net 0.324146 0.222908 3.134170e-07 0.278736 0.145830 1.091201e-06 0.297476 0.216746 8.206739e-08 0.125 0.107116 0.000116 0.959900 0.072432 0.0 0.961052 0.080379 0.0 0.915010 0.204456 0.0 QDA 0.338089 0.262604 8.712525e-06 0.285470 0.206876 2.761767e-04 0.313055 0.243018 1.225787e-06 0.150 0.115652 0.000530 0.949875 0.077694 0.0 0.950718 0.098284 0.0 0.885171 0.192649 0.0 RBF SVM 0.146465 0.189716 5.131397e-11 0.173264 0.167918 2.510477e-07 0.120762 0.167803 9.753115e-13 0.025 0.050567 0.000001 0.957393 0.119010 0.0 0.925618 0.183161 0.0 0.920814 0.211212 0.0 Random Forest 0.305017 0.221354 1.639340e-07 0.264840 0.149891 9.905010e-07 0.273350 0.211773 2.624395e-08 0.075 0.085310 0.000008 0.966165 0.068922 0.0 0.975701 0.057849 0.0 0.956003 0.141548 0.0 iid 1.004444 0.021566 NaN 0.695370 0.010787 NaN 1.005362 0.026018 NaN 0.525 0.161742 NaN 0.500000 0.000000 NaN 0.525000 0.150000 NaN 0.000000 0.000000 NaN
Here we show the output of just_format_it
:
AP p AUC p AUPRG p Brier p NLL (nats) p sphere p zero one p AdaBoost 0.93(16) <0.0001 0.950(96) <0.0001 0.90464 <0.0001 0.42(14) <0.0001 0.368(80) <0.0001 0.36(15) <0.0001 0.075(86) <0.0001 Decision Tree 0.95(13) <0.0001 0.966(72) <0.0001 0.93860 <0.0001 0.18(25) <0.0001 0.40(71) 0.4072 0.16(22) <0.0001 0.050(71) <0.0001 Gaussian Process 0.90(23) <0.0001 0.95(11) <0.0001 0.92081 <0.0001 0.27(17) <0.0001 0.27(11) <0.0001 0.22(16) <0.0001 0.025(51) <0.0001 Linear SVM 0.952(96) <0.0001 0.950(76) <0.0001 0.88705 <0.0001 0.33(25) <0.0001 0.28(18) <0.0001 0.31(24) <0.0001 0.13(11) 0.0002 Naive Bayes 0.957(99) <0.0001 0.957(73) <0.0001 0.89782 <0.0001 0.34(25) <0.0001 0.28(18) <0.0001 0.31(24) <0.0001 0.13(11) 0.0002 Nearest Neighbors 0.94(12) <0.0001 0.969(74) <0.0001 0.93498 <0.0001 0.18(21) <0.0001 0.42(70) 0.4241 0.15(18) <0.0001 0.025(51) <0.0001 Neural Net 0.961(81) <0.0001 0.960(73) <0.0001 0.91501 <0.0001 0.32(23) <0.0001 0.28(15) <0.0001 0.30(22) <0.0001 0.13(11) 0.0002 QDA 0.951(99) <0.0001 0.950(78) <0.0001 0.88517 <0.0001 0.34(27) <0.0001 0.29(21) 0.0003 0.31(25) <0.0001 0.15(12) 0.0006 RBF SVM 0.93(19) <0.0001 0.96(12) <0.0001 0.92081 <0.0001 0.15(19) <0.0001 0.17(17) <0.0001 0.12(17) <0.0001 0.025(51) <0.0001 Random Forest 0.976(58) <0.0001 0.966(69) <0.0001 0.95600 <0.0001 0.31(23) <0.0001 0.26(15) <0.0001 0.27(22) <0.0001 0.075(86) <0.0001 iid 0.53(15) N/A 0.5(0) N/A 0(0) N/A 1.004(22) N/A 0.695(11) N/A 1.005(27) N/A 0.53(17) N/A
Here we show the output of just_format_it
with use_tex=True
:
\begin{tabular}{|l|Sr|Sr|Sr|Sr|Sr|Sr|Sr|} \toprule {} & {AP} & {p} & {AUC} & {p} & {AUPRG} & {p} & {Brier} & {p} & {NLL (nats)} & {p} & {sphere} & {p} & {zero one} & {p} \\ \midrule AdaBoost & 0.93(16) & <0.0001 & 0.950(96) & <0.0001 & 0.90464 & <0.0001 & 0.42(14) & <0.0001 & 0.368(80) & <0.0001 & 0.36(15) & <0.0001 & 0.075(86) & <0.0001 \\ Decision Tree & 0.95(13) & <0.0001 & 0.966(72) & <0.0001 & 0.93860 & <0.0001 & 0.18(25) & <0.0001 & 0.40(71) & 0.4072 & 0.16(22) & <0.0001 & 0.050(71) & <0.0001 \\ Gaussian Process & 0.90(23) & <0.0001 & 0.95(11) & <0.0001 & 0.92081 & <0.0001 & 0.27(17) & <0.0001 & 0.27(11) & <0.0001 & 0.22(16) & <0.0001 & 0.025(51) & <0.0001 \\ Linear SVM & 0.952(96) & <0.0001 & 0.950(76) & <0.0001 & 0.88705 & <0.0001 & 0.33(25) & <0.0001 & 0.28(18) & <0.0001 & 0.31(24) & <0.0001 & 0.13(11) & 0.0002 \\ Naive Bayes & 0.957(99) & <0.0001 & 0.957(73) & <0.0001 & 0.89782 & <0.0001 & 0.34(25) & <0.0001 & 0.28(18) & <0.0001 & 0.31(24) & <0.0001 & 0.13(11) & 0.0002 \\ Nearest Neighbors & 0.94(12) & <0.0001 & 0.969(74) & <0.0001 & 0.93498 & <0.0001 & 0.18(21) & <0.0001 & 0.42(70) & 0.4241 & 0.15(18) & <0.0001 & 0.025(51) & <0.0001 \\ Neural Net & 0.961(81) & <0.0001 & 0.960(73) & <0.0001 & 0.91501 & <0.0001 & 0.32(23) & <0.0001 & 0.28(15) & <0.0001 & 0.30(22) & <0.0001 & 0.13(11) & 0.0002 \\ QDA & 0.951(99) & <0.0001 & 0.950(78) & <0.0001 & 0.88517 & <0.0001 & 0.34(27) & <0.0001 & 0.29(21) & 0.0003 & 0.31(25) & <0.0001 & 0.15(12) & 0.0006 \\ RBF SVM & 0.93(19) & <0.0001 & 0.96(12) & <0.0001 & 0.92081 & <0.0001 & 0.15(19) & <0.0001 & 0.17(17) & <0.0001 & 0.12(17) & <0.0001 & 0.025(51) & <0.0001 \\ Random Forest & 0.976(58) & <0.0001 & 0.966(69) & <0.0001 & 0.95600 & <0.0001 & 0.31(23) & <0.0001 & 0.26(15) & <0.0001 & 0.27(22) & <0.0001 & 0.075(86) & <0.0001 \\ iid & 0.53(15) & {--} & 0.5(0) & {--} & 0(0) & {--} & 1.004(22) & {--} & 0.695(11) & {--} & 1.005(27) & {--} & 0.53(17) & {--} \\ \bottomrule \end{tabular}
metric Brier NLL sphere zero_one AUC AP AUPRG stat mean error p mean error p mean error p mean error p mean error p mean error p mean error p method AdaBoost 0.772573 0.095313 2.033552e-07 0.576206 0.049498 1.935422e-07 0.734630 0.110164 2.279943e-07 0.175 0.123067 3.886877e-06 0.885417 0.117417 0.000 0.938284 0.095521 0.000 0.760908 0.492188 0.004 Decision Tree 0.799998 0.518223 3.008083e-01 2.763103 1.789881 2.691681e-02 0.682842 0.442331 7.918040e-02 0.200 0.129556 2.738574e-04 0.802083 0.143964 0.000 0.863636 0.163636 0.000 0.763158 0.266426 0.000 Gaussian Process 0.390730 0.221014 1.309465e-07 0.327736 0.134797 2.622545e-07 0.361218 0.224875 6.001903e-08 0.100 0.097167 2.365995e-07 0.963542 0.066106 0.000 0.977432 0.047043 0.000 0.930490 0.217950 0.000 Linear SVM 1.022831 0.032154 7.027710e-02 0.704573 0.016091 7.017962e-02 1.027522 0.038764 7.042062e-02 0.600 0.158673 1.000000e+00 0.513021 0.203687 0.942 0.531643 0.175163 0.194 0.197563 0.390902 0.344 Naive Bayes 0.644184 0.192038 3.242921e-07 0.478220 0.110889 2.871541e-07 0.630224 0.206960 4.057918e-07 0.300 0.148425 2.101106e-04 0.997396 0.013396 0.000 0.998264 0.008681 0.000 0.995747 0.030182 0.000 Nearest Neighbors 0.300000 0.152301 5.949906e-11 0.234446 0.100982 4.246213e-11 0.276718 0.158441 1.125534e-10 0.075 0.085310 5.310307e-07 0.966146 0.049479 0.000 0.996377 0.012940 0.000 0.990702 0.051036 0.000 Neural Net 0.699274 0.138407 2.892746e-09 0.532132 0.073755 3.119226e-09 0.664108 0.155756 3.187473e-09 0.275 0.144621 9.983420e-05 0.992188 0.025155 0.000 0.995192 0.019231 0.000 0.987240 0.055882 0.000 QDA 0.629840 0.182293 4.465387e-08 0.473008 0.104901 4.571531e-08 0.612127 0.196927 5.707883e-08 0.275 0.144621 9.983420e-05 0.997396 0.013021 0.000 0.998264 0.010029 0.000 0.995747 0.026592 0.000 RBF SVM 0.387512 0.207708 3.157955e-08 0.331539 0.128314 9.742683e-08 0.356649 0.210642 1.440976e-08 0.125 0.107116 6.271107e-07 0.966146 0.059580 0.000 0.979187 0.045865 0.000 0.936801 0.196317 0.000 Random Forest 0.657978 0.206179 3.062032e-05 0.479941 0.119849 2.282042e-05 0.650341 0.222052 3.599606e-05 0.350 0.154486 8.725736e-04 0.945312 0.081904 0.000 0.970699 0.055514 0.000 0.905713 0.269476 0.000 iid 1.071111 0.084626 NaN 0.728942 0.042566 NaN 1.084992 0.101256 NaN 0.600 0.158673 NaN 0.500000 0.000000 NaN 0.600000 0.175000 NaN 0.000000 0.000000 NaN
AP p AUC p AUPRG p Brier p NLL (nats) p sphere p zero one p AdaBoost 0.938(96) <0.0001 0.89(12) <0.0001 0.76091 0.0041 0.773(96) <0.0001 0.576(50) <0.0001 0.73(12) <0.0001 0.17(13) <0.0001 Decision Tree 0.86(17) <0.0001 0.80(15) <0.0001 0.76316 <0.0001 0.80(52) 0.3009 2.8(18) 0.0270 0.68(45) 0.0792 0.20(13) 0.0003 Gaussian Process 0.977(48) <0.0001 0.964(67) <0.0001 0.93049 <0.0001 0.39(23) <0.0001 0.33(14) <0.0001 0.36(23) <0.0001 0.100(98) <0.0001 Linear SVM 0.53(18) 0.1941 0.51(21) 0.9420 0.19756 0.3440 1.023(33) 0.0703 0.705(17) 0.0702 1.028(39) 0.0705 0.60(16) 1.0000 Naive Bayes 0.9983(87) <0.0001 0.997(14) <0.0001 0.996(31) <0.0001 0.64(20) <0.0001 0.48(12) <0.0001 0.63(21) <0.0001 0.30(15) 0.0003 Nearest Neighbors 0.996(13) <0.0001 0.966(50) <0.0001 0.991(52) <0.0001 0.30(16) <0.0001 0.23(11) <0.0001 0.28(16) <0.0001 0.075(86) <0.0001 Neural Net 0.995(20) <0.0001 0.992(26) <0.0001 0.987(56) <0.0001 0.70(14) <0.0001 0.532(74) <0.0001 0.66(16) <0.0001 0.28(15) <0.0001 QDA 0.998(11) <0.0001 0.997(14) <0.0001 0.996(27) <0.0001 0.63(19) <0.0001 0.47(11) <0.0001 0.61(20) <0.0001 0.28(15) <0.0001 RBF SVM 0.979(46) <0.0001 0.966(60) <0.0001 0.93680 <0.0001 0.39(21) <0.0001 0.33(13) <0.0001 0.36(22) <0.0001 0.13(11) <0.0001 Random Forest 0.971(56) <0.0001 0.945(82) <0.0001 0.90571 <0.0001 0.66(21) <0.0001 0.48(12) <0.0001 0.65(23) <0.0001 0.35(16) 0.0009 iid 0.60(18) N/A 0.5(0) N/A 0(0) N/A 1.071(85) N/A 0.729(43) N/A 1.08(11) N/A 0.60(16) N/A
\begin{tabular}{|l|Sr|Sr|Sr|Sr|Sr|Sr|Sr|} \toprule {} & {AP} & {p} & {AUC} & {p} & {AUPRG} & {p} & {Brier} & {p} & {NLL (nats)} & {p} & {sphere} & {p} & {zero one} & {p} \\ \midrule AdaBoost & 0.938(96) & <0.0001 & 0.89(12) & <0.0001 & 0.76091 & 0.0041 & 0.773(96) & <0.0001 & 0.576(50) & <0.0001 & 0.73(12) & <0.0001 & 0.17(13) & <0.0001 \\ Decision Tree & 0.86(17) & <0.0001 & 0.80(15) & <0.0001 & 0.76316 & <0.0001 & 0.80(52) & 0.3009 & 2.8(18) & 0.0270 & 0.68(45) & 0.0792 & 0.20(13) & 0.0003 \\ Gaussian Process & 0.977(48) & <0.0001 & 0.964(67) & <0.0001 & 0.93049 & <0.0001 & 0.39(23) & <0.0001 & 0.33(14) & <0.0001 & 0.36(23) & <0.0001 & 0.100(98) & <0.0001 \\ Linear SVM & 0.53(18) & 0.1941 & 0.51(21) & 0.9420 & 0.19756 & 0.3440 & 1.023(33) & 0.0703 & 0.705(17) & 0.0702 & 1.028(39) & 0.0705 & 0.60(16) & 1.0000 \\ Naive Bayes & 0.9983(87) & <0.0001 & 0.997(14) & <0.0001 & 0.996(31) & <0.0001 & 0.64(20) & <0.0001 & 0.48(12) & <0.0001 & 0.63(21) & <0.0001 & 0.30(15) & 0.0003 \\ Nearest Neighbors & 0.996(13) & <0.0001 & 0.966(50) & <0.0001 & 0.991(52) & <0.0001 & 0.30(16) & <0.0001 & 0.23(11) & <0.0001 & 0.28(16) & <0.0001 & 0.075(86) & <0.0001 \\ Neural Net & 0.995(20) & <0.0001 & 0.992(26) & <0.0001 & 0.987(56) & <0.0001 & 0.70(14) & <0.0001 & 0.532(74) & <0.0001 & 0.66(16) & <0.0001 & 0.28(15) & <0.0001 \\ QDA & 0.998(11) & <0.0001 & 0.997(14) & <0.0001 & 0.996(27) & <0.0001 & 0.63(19) & <0.0001 & 0.47(11) & <0.0001 & 0.61(20) & <0.0001 & 0.28(15) & <0.0001 \\ RBF SVM & 0.979(46) & <0.0001 & 0.966(60) & <0.0001 & 0.93680 & <0.0001 & 0.39(21) & <0.0001 & 0.33(13) & <0.0001 & 0.36(22) & <0.0001 & 0.13(11) & <0.0001 \\ Random Forest & 0.971(56) & <0.0001 & 0.945(82) & <0.0001 & 0.90571 & <0.0001 & 0.66(21) & <0.0001 & 0.48(12) & <0.0001 & 0.65(23) & <0.0001 & 0.35(16) & 0.0009 \\ iid & 0.60(18) & {--} & 0.5(0) & {--} & 0(0) & {--} & 1.071(85) & {--} & 0.729(43) & {--} & 1.08(11) & {--} & 0.60(16) & {--} \\ \bottomrule \end{tabular}
metric Brier NLL sphere zero_one AUC AP AUPRG stat mean error p mean error p mean error p mean error p mean error p mean error p mean error p method AdaBoost 0.214533 0.216136 2.523354e-09 0.266751 0.284832 3.316058e-03 0.181731 0.192985 5.067723e-11 0.050 0.070590 2.365995e-07 0.960859 0.084919 0.0 0.984375 0.046444 0.0 0.962739 0.152133 0.0 Decision Tree 0.200000 0.282360 5.539287e-07 0.690777 0.975239 9.813826e-01 0.170711 0.241010 8.377727e-09 0.050 0.070590 2.365995e-07 0.954545 0.073593 0.0 1.000000 0.000000 0.0 1.000000 0.000000 0.0 Gaussian Process 0.248299 0.233660 5.571488e-08 0.231293 0.167469 1.166786e-06 0.226209 0.221771 1.002195e-08 0.075 0.085310 3.288484e-06 0.977273 0.048884 0.0 0.983970 0.036602 0.0 0.967939 0.113686 0.0 Linear SVM 0.195653 0.169766 1.953849e-12 0.171331 0.106189 8.714501e-13 0.182363 0.173447 2.092714e-12 0.075 0.085310 6.271107e-07 0.992424 0.025391 0.0 0.993883 0.020471 0.0 0.989313 0.046518 0.0 Naive Bayes 0.182688 0.199860 1.436482e-10 0.153294 0.146642 2.446338e-09 0.169801 0.189483 2.112408e-11 0.050 0.070590 2.365995e-07 0.989899 0.025705 0.0 0.992154 0.029191 0.0 0.985926 0.053426 0.0 Nearest Neighbors 0.288888 0.292454 8.819375e-06 0.758788 0.972439 9.062639e-01 0.253939 0.255113 3.272489e-07 0.075 0.085310 3.288484e-06 0.945707 0.079545 0.0 0.991736 0.030951 0.0 0.985062 0.062596 0.0 Neural Net 0.241892 0.180491 6.591102e-11 0.225558 0.116770 2.636651e-10 0.213904 0.178405 1.739092e-11 0.050 0.070590 2.365995e-07 0.979798 0.041179 0.0 0.985330 0.040191 0.0 0.971326 0.097755 0.0 QDA 0.212993 0.231863 1.247745e-08 0.229875 0.279135 1.326240e-03 0.194385 0.210940 6.717171e-10 0.075 0.085310 6.271107e-07 0.974747 0.062467 0.0 0.984199 0.046699 0.0 0.965601 0.119770 0.0 RBF SVM 0.214270 0.250165 6.537310e-08 0.217172 0.210803 2.886575e-05 0.185181 0.225345 2.477126e-09 0.050 0.070590 2.365995e-07 0.969697 0.060865 0.0 0.980435 0.051863 0.0 0.957777 0.153369 0.0 Random Forest 0.234000 0.239004 3.497739e-08 0.462160 0.698397 4.890795e-01 0.205669 0.216480 1.355248e-09 0.075 0.085310 6.271107e-07 0.972222 0.063131 0.0 0.993883 0.017963 0.0 0.989313 0.050657 0.0 iid 1.017778 0.042969 NaN 0.702051 0.021516 NaN 1.021406 0.051753 NaN 0.550 0.161133 NaN 0.500000 0.000000 NaN 0.550000 0.150000 NaN 0.000000 0.000000 NaN
AP p AUC p AUPRG p Brier p NLL (nats) p sphere p zero one p AdaBoost 0.984(47) <0.0001 0.961(85) <0.0001 0.96274 <0.0001 0.21(22) <0.0001 0.27(29) 0.0034 0.18(20) <0.0001 0.050(71) <0.0001 Decision Tree 1(0) <0.0001 0.955(74) <0.0001 1(0) <0.0001 0.20(29) <0.0001 0.69(98) 0.9814 0.17(25) <0.0001 0.050(71) <0.0001 Gaussian Process 0.984(37) <0.0001 0.977(49) <0.0001 0.96794 <0.0001 0.25(24) <0.0001 0.23(17) <0.0001 0.23(23) <0.0001 0.075(86) <0.0001 Linear SVM 0.994(21) <0.0001 0.992(26) <0.0001 0.989(47) <0.0001 0.20(17) <0.0001 0.17(11) <0.0001 0.18(18) <0.0001 0.075(86) <0.0001 Naive Bayes 0.992(30) <0.0001 0.990(26) <0.0001 0.986(54) <0.0001 0.18(20) <0.0001 0.15(15) <0.0001 0.17(19) <0.0001 0.050(71) <0.0001 Nearest Neighbors 0.992(31) <0.0001 0.946(80) <0.0001 0.985(63) <0.0001 0.29(30) <0.0001 0.76(98) 0.9063 0.25(26) <0.0001 0.075(86) <0.0001 Neural Net 0.985(41) <0.0001 0.980(42) <0.0001 0.971(98) <0.0001 0.24(19) <0.0001 0.23(12) <0.0001 0.21(18) <0.0001 0.050(71) <0.0001 QDA 0.984(47) <0.0001 0.975(63) <0.0001 0.96560 <0.0001 0.21(24) <0.0001 0.23(28) 0.0014 0.19(22) <0.0001 0.075(86) <0.0001 RBF SVM 0.980(52) <0.0001 0.970(61) <0.0001 0.95778 <0.0001 0.21(26) <0.0001 0.22(22) <0.0001 0.19(23) <0.0001 0.050(71) <0.0001 Random Forest 0.994(18) <0.0001 0.972(64) <0.0001 0.989(51) <0.0001 0.23(24) <0.0001 0.46(70) 0.4891 0.21(22) <0.0001 0.075(86) <0.0001 iid 0.55(15) N/A 0.5(0) N/A 0(0) N/A 1.018(43) N/A 0.702(22) N/A 1.021(52) N/A 0.55(17) N/A
\begin{tabular}{|l|Sr|Sr|Sr|Sr|Sr|Sr|Sr|} \toprule {} & {AP} & {p} & {AUC} & {p} & {AUPRG} & {p} & {Brier} & {p} & {NLL (nats)} & {p} & {sphere} & {p} & {zero one} & {p} \\ \midrule AdaBoost & 0.984(47) & <0.0001 & 0.961(85) & <0.0001 & 0.96274 & <0.0001 & 0.21(22) & <0.0001 & 0.27(29) & 0.0034 & 0.18(20) & <0.0001 & 0.050(71) & <0.0001 \\ Decision Tree & 1(0) & <0.0001 & 0.955(74) & <0.0001 & 1(0) & <0.0001 & 0.20(29) & <0.0001 & 0.69(98) & 0.9814 & 0.17(25) & <0.0001 & 0.050(71) & <0.0001 \\ Gaussian Process & 0.984(37) & <0.0001 & 0.977(49) & <0.0001 & 0.96794 & <0.0001 & 0.25(24) & <0.0001 & 0.23(17) & <0.0001 & 0.23(23) & <0.0001 & 0.075(86) & <0.0001 \\ Linear SVM & 0.994(21) & <0.0001 & 0.992(26) & <0.0001 & 0.989(47) & <0.0001 & 0.20(17) & <0.0001 & 0.17(11) & <0.0001 & 0.18(18) & <0.0001 & 0.075(86) & <0.0001 \\ Naive Bayes & 0.992(30) & <0.0001 & 0.990(26) & <0.0001 & 0.986(54) & <0.0001 & 0.18(20) & <0.0001 & 0.15(15) & <0.0001 & 0.17(19) & <0.0001 & 0.050(71) & <0.0001 \\ Nearest Neighbors & 0.992(31) & <0.0001 & 0.946(80) & <0.0001 & 0.985(63) & <0.0001 & 0.29(30) & <0.0001 & 0.76(98) & 0.9063 & 0.25(26) & <0.0001 & 0.075(86) & <0.0001 \\ Neural Net & 0.985(41) & <0.0001 & 0.980(42) & <0.0001 & 0.971(98) & <0.0001 & 0.24(19) & <0.0001 & 0.23(12) & <0.0001 & 0.21(18) & <0.0001 & 0.050(71) & <0.0001 \\ QDA & 0.984(47) & <0.0001 & 0.975(63) & <0.0001 & 0.96560 & <0.0001 & 0.21(24) & <0.0001 & 0.23(28) & 0.0014 & 0.19(22) & <0.0001 & 0.075(86) & <0.0001 \\ RBF SVM & 0.980(52) & <0.0001 & 0.970(61) & <0.0001 & 0.95778 & <0.0001 & 0.21(26) & <0.0001 & 0.22(22) & <0.0001 & 0.19(23) & <0.0001 & 0.050(71) & <0.0001 \\ Random Forest & 0.994(18) & <0.0001 & 0.972(64) & <0.0001 & 0.989(51) & <0.0001 & 0.23(24) & <0.0001 & 0.46(70) & 0.4891 & 0.21(22) & <0.0001 & 0.075(86) & <0.0001 \\ iid & 0.55(15) & {--} & 0.5(0) & {--} & 0(0) & {--} & 1.018(43) & {--} & 0.702(22) & {--} & 1.021(52) & {--} & 0.55(17) & {--} \\ \bottomrule \end{tabular}
The just_benchmark routines also produces ROC curves with error bars from bootstrap analysis, which have been vectorized for speed:
The mlpaper package can also be applied to a regression problem with:
import mlpaper.regression as btr
full_tbl = btr.just_benchmark(X_train, y_train, X_test, y_test, regressors, STD_REGR_LOSS, "iid", pairwise_CI=True)
Here we have used pairwise_CI=True
which makes the confidence
intervals based on the uncertainty of the loss difference to the
reference method rather than a confidence interval on the actual loss.
By extending the sklearn regression demo we can make simple formatted tables:
MAE p MSE p NLL (nats) p BLR 0.96933(30) 0.0979 1.39881(67) 0.0665 1.58842(57) 0.9828 GPR 0.75(13) 0.0009 0.75(28) <0.0001 1.27(12) <0.0001 iid 0.96908 N/A 1.3982 N/A 1.5884 N/A
or in LaTeX:
\begin{tabular}{|l|Sr|Sr|Sr|} \toprule {} & {MAE} & {p} & {MSE} & {p} & {NLL (nats)} & {p} \\ \midrule BLR & 0.96933(30) & 0.0979 & 1.39881(67) & 0.0665 & 1.58842(57) & 0.9828 \\ GPR & 0.75(13) & 0.0009 & 0.75(28) & <0.0001 & 1.27(12) & <0.0001 \\ iid & 0.96908 & N/A & 1.3982 & N/A & 1.5884 & N/A \\ \bottomrule \end{tabular}
The following instructions have been tested with Python 3.7.4 on Mac OS (10.14.6).
First, define the variables for the paths we will use:
GIT=/path/to/where/you/put/repos
ENVS=/path/to/where/you/put/virtualenvs
Then clone the repo in your git directory $GIT
:
cd $GIT
git clone https://github.com/rdturnermtl/mlpaper.git
Inside your virtual environments folder $ENVS
, make the environment:
cd $ENVS
virtualenv mlpaper --python=python3.7
source $ENVS/mlpaper/bin/activate
Now we can install the pip dependencies. Move back into your git directory and run
cd $GIT/mlpaper
pip install -r requirements/base.txt
pip install -e . # Install the package itself
First, we need to setup some needed tools:
cd $ENVS
virtualenv mlpaper_tools --python=python3.7
source $ENVS/mlpaper_tools/bin/activate
pip install -r $GIT/mlpaper/requirements/tools.txt
To install the pre-commit hooks for contributing run (in the mlpaper_tools
environment):
cd $GIT/mlpaper
pre-commit install
To rebuild the requirements, we can run:
cd $GIT/mlpaper
# Check if there any discrepancies in the .in files
pipreqs mlpaper/ --diff requirements/base.in
pipreqs tests/ --diff requirements/test.in
pipreqs demos/ --diff requirements/demo.in
pipreqs docs/ --diff requirements/docs.in
# Regenerate the .txt files from .in files
pip-compile-multi --no-upgrade
First setup the environment for building with Sphinx
:
cd $ENVS
virtualenv mlpaper_docs --python=python3.7
source $ENVS/mlpaper_docs/bin/activate
pip install -r $GIT/mlpaper/requirements/docs.txt
Then we can do the build:
cd $GIT/mlpaper/docs
make all
open _build/html/index.html
Documentation will be available in all formats in Makefile
. Use make html
to only generate the HTML documentation.
The tests for this package can be run with:
cd $GIT/mlpaper
./local_test.sh
The script creates an environment using the requirements found in requirements/test.txt
.
A code coverage report will also be produced in $GIT/mlpaper/htmlcov/index.html
.
The wheel (tar ball) for deployment as a pip installable package can be built using the script:
cd $GIT/mlpaper/
./build_wheel.sh
The source is hosted on GitHub.
The documentation is hosted at Read the Docs.
Installable from PyPI.
This project is licensed under the Apache 2 License - see the LICENSE file for details.