ropensci/tidync

raster slicer (wish)

Opened this issue · 1 comments

Old code

#' Construct raster from slices
#' 
#' Experimental, internal
#' @keywords internal
#' @noRd
#' @examples
#' files <- raadtools::ghrsstfiles() 
#' tnc <- tidync(files$fullname[1])
#' library(dplyr)
#' system.time(r0 <- raster0(tnc, lon = between(lon, 138, 150), lat = between(lat, -50, -40), select_var = "analysis_error"))
#' library(raster)
#' plot(r0)
#' 
#' 
#' ha <- hyper_array(tnc, lon = between(lon, 138, 150), lat = between(lat, -50, -40), select_var = "analysis_error")
#' 
#' raster1(tnc, lon = between(lon, 138, 150), lat = between(lat, -50, -40), select_var = "analysis_error")
#' tnc %>% hyper_filter(lon = between(lon, 138, 150), lat = between(lat, -50, -40)) %>% 
#'   raster(select_var = "analysed_sst")
#' 
#' @name raster-tidync
#' set_ext0 <- function(x) {
#'   ## set index extent on a raster
#'   raster::setExtent(x, raster::extent(0, ncol(x), 0, nrow(x)))
#' }
#' #' @name raster-tidync
#' slicer <- function(x, slice = 1) {
#'   ## slice out the right matrix from a hyper_array list
#'   ## for 2D or 3D only currently
#'   dm <- dim(x)
#'   offs <- 0
#'   if (length(dm) > 2) offs <- (slice - 1) * prod(dm[1:2])
#'   
#'   rflip(matrix(x[seq_len(prod(dm[1:2])) + offs], dm))
#' }
#' #' @name raster-tidync
#' rflip <- function(x) {
#'   ## orient matrix to raster
#'   t(x[, ncol(x):1])
#' }
#' #' @name raster-tidync
#' raster0 <- function(x, ..., slice = 1) {
#'   if (!requireNamespace("raster", quietly = TRUE))
#'     stop("package raster required, try installing with 'install.packages(\"raster\")'")
#'   
#'   ## convert to index raster
#'   UseMethod("raster0") 
#' }
#' #' @name raster-tidync
#' raster0.default <- function(x, ..., slice = 1) {
#'   
#'   set_ext0(raster::raster(slicer(x[[1]], slice)))
#' }
#' #' @name raster-tidync
#' raster0.tidync <- function(x, ..., slice = 1) {
#'   raster0(hyper_array(x, ...), slice = slice)
#' }
#' 
#' 
#' #' @name raster-tidync
#' array_transforms <- function(x) {
#'   #' get hyper array transforms (could be axis_transforms)
#'   attr(x, "transforms")
#' }
#' 
#' #' @name raster-tidync
#' select_transforms <- function(x) {
#'   # only selected coordinates
#'   lapply(array_transforms(x), function(a) dplyr::filter(a, .data$selected))
#' }
#' #' @name raster-tidync
#' raster1 <- function(x, ..., slice = 1) {
#'   if (!requireNamespace("raster", quietly = TRUE))
#'     stop("package raster required, try installing with 'install.packages(\"raster\")'")
#'   
#'   ## raster with reference extent
#'   ha <- hyper_array(x, ...)
#'   tr <- select_transforms(ha)
#'   r <- raster0(ha, ..., slice = slice)
#'   dnames <- names(tr)
#'   
#'   ## need to detect reversals here
#'   xs <- tr[[dnames[1]]][[dnames[1]]]
#'   ys <- tr[[dnames[2]]][[dnames[2]]]
#'   dx <- diff(xs[1:2])
#'   dy <- diff(ys[1:2])
#' 
#'   ex <- raster::extent(min(xs), max(xs), min(ys), max(ys)) + c(dx, dy)/2
#'   raster::setExtent(r, ex)
#'   
#' }
#' 
#' #setOldClass("tidync")
#' #if (!isGeneric("raster"))
#' #  setGeneric("raster", function(x, ...)
#' #    standardGeneric("raster"))
#' #setMethod("raster", "tidync", raster1)

See a raster-angstroms approach in AustralianAntarcticDivision/angstroms#18 that uses quadmesh