lora load error
Yidhar opened this issue · 4 comments
Yidhar commented
no prior LoRA path declared
applying prior LoRA attention layers from None
Traceback (most recent call last):
File "D:\kubin\venv\Lib\site-packages\gradio\routes.py", line 442, in run_predict
output = await app.get_blocks().process_api(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\venv\Lib\site-packages\gradio\blocks.py", line 1392, in process_api
result = await self.call_function(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\venv\Lib\site-packages\gradio\blocks.py", line 1097, in call_function
prediction = await anyio.to_thread.run_sync(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\venv\Lib\site-packages\anyio\to_thread.py", line 33, in run_sync
return await get_asynclib().run_sync_in_worker_thread(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\venv\Lib\site-packages\anyio\_backends\_asyncio.py", line 877, in run_sync_in_worker_thread
return await future
^^^^^^^^^^^^
File "D:\kubin\venv\Lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run
result = context.run(func, *args)
^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\venv\Lib\site-packages\gradio\utils.py", line 703, in wrapper
response = f(*args, **kwargs)
^^^^^^^^^^^^^^^^^^
File "D:\kubin\src\ui_blocks\t2i.py", line 290, in generate
return generate_fn(params)
^^^^^^^^^^^^^^^^^^^
File "D:\kubin\src\web_gui.py", line 43, in <lambda>
generate_fn=lambda params: kubin.model.t2i(params),
^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\src\models\model_diffusers22\model_22.py", line 161, in t2i
hooks.call(
File "D:\kubin\src\hooks\hooks.py", line 34, in call
hook(hook_type, **hook_info)
File "D:\kubin\extensions/kd-networks/setup_ext.py", line 61, in on_hook
bind_networks(
File "D:\kubin\extensions/kd-networks\nn_tools\nn_attach.py", line 17, in bind_networks
bind_lora(kubin, model_config, prior, decoder, params, task, networks_info["lora"])
File "D:\kubin\extensions/kd-networks\nn_tools\nn_attach.py", line 56, in bind_lora
apply_lora_to_prior(kubin, lora_prior_path, prior)
File "D:\kubin\extensions/kd-networks\nn_tools\nn_attach.py", line 94, in apply_lora_to_prior
lora_model = load_model_from_path(lora_prior_path)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\extensions/kd-networks\file_tools.py", line 20, in load_model_from_path
file_extension = os.path.splitext(path)[1].lstrip(".")
^^^^^^^^^^^^^^^^^^^^^^
File "<frozen ntpath>", line 232, in splitext
TypeError: expected str, bytes or os.PathLike object, not NoneType
Do I need to enable both the prior lora and the decoder lora for lora to work properly?
seruva19 commented
Yes, Kandinsky LoRA includes two files, so both paths should be filled.
Yidhar commented
Yes, Kandinsky LoRA includes two files, so both paths should be filled.
oky,new error.After I have loaded lora and finished sampling once, the following error occurs when the image is generated again
Yidhar commented
Traceback (most recent call last):
File "D:\kubin\venv\Lib\site-packages\gradio\routes.py", line 442, in run_predict
output = await app.get_blocks().process_api(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\venv\Lib\site-packages\gradio\blocks.py", line 1392, in process_api
result = await self.call_function(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\venv\Lib\site-packages\gradio\blocks.py", line 1097, in call_function
prediction = await anyio.to_thread.run_sync(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\venv\Lib\site-packages\anyio\to_thread.py", line 33, in run_sync
return await get_asynclib().run_sync_in_worker_thread(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\venv\Lib\site-packages\anyio\_backends\_asyncio.py", line 877, in run_sync_in_worker_thread
return await future
^^^^^^^^^^^^
File "D:\kubin\venv\Lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run
result = context.run(func, *args)
^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\venv\Lib\site-packages\gradio\utils.py", line 703, in wrapper
response = f(*args, **kwargs)
^^^^^^^^^^^^^^^^^^
File "D:\kubin\src\ui_blocks\t2i.py", line 290, in generate
return generate_fn(params)
^^^^^^^^^^^^^^^^^^^
File "D:\kubin\src\web_gui.py", line 43, in <lambda>
generate_fn=lambda params: kubin.model.t2i(params),
^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\src\models\model_diffusers22\model_22.py", line 153, in t2i
prior, decoder = self.prepareModel(task)
^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\src\models\model_diffusers22\model_22.py", line 89, in prepareModel
prior, decoder = prepare_weights_for_task(self, task)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\kubin\src\models\model_diffusers22\model_22_init.py", line 233, in prepare_weights_for_task
current_decoder.disable_xformers_memory_efficient_attention()
File "D:\kubin\venv\Lib\site-packages\diffusers\pipelines\pipeline_utils.py", line 1647, in disable_xformers_memory_efficient_attention
self.set_use_memory_efficient_attention_xformers(False)
File "D:\kubin\venv\Lib\site-packages\diffusers\pipelines\pipeline_utils.py", line 1667, in set_use_memory_efficient_attention_xformers
fn_recursive_set_mem_eff(module)
File "D:\kubin\venv\Lib\site-packages\diffusers\pipelines\pipeline_utils.py", line 1657, in fn_recursive_set_mem_eff
module.set_use_memory_efficient_attention_xformers(valid, attention_op)
File "D:\kubin\venv\Lib\site-packages\diffusers\models\modeling_utils.py", line 227, in set_use_memory_efficient_attention_xformers
fn_recursive_set_mem_eff(module)
File "D:\kubin\venv\Lib\site-packages\diffusers\models\modeling_utils.py", line 223, in fn_recursive_set_mem_eff
fn_recursive_set_mem_eff(child)
File "D:\kubin\venv\Lib\site-packages\diffusers\models\modeling_utils.py", line 223, in fn_recursive_set_mem_eff
fn_recursive_set_mem_eff(child)
File "D:\kubin\venv\Lib\site-packages\diffusers\models\modeling_utils.py", line 223, in fn_recursive_set_mem_eff
fn_recursive_set_mem_eff(child)
File "D:\kubin\venv\Lib\site-packages\diffusers\models\modeling_utils.py", line 220, in fn_recursive_set_mem_eff
module.set_use_memory_efficient_attention_xformers(valid, attention_op)
File "D:\kubin\venv\Lib\site-packages\diffusers\models\attention_processor.py", line 259, in set_use_memory_efficient_attention_xformers
processor.load_state_dict(self.processor.state_dict())
File "D:\kubin\venv\Lib\site-packages\torch\nn\modules\module.py", line 2041, in load_state_dict
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for LoRAAttnProcessor2_0:
Unexpected key(s) in state_dict: "add_k_proj_lora.down.weight", "add_k_proj_lora.up.weight", "add_v_proj_lora.down.weight", "add_v_proj_lora.up.weight".
Yidhar commented
Yes, Kandinsky LoRA includes two files, so both paths should be filled.
oky,new error.After I have loaded lora and finished sampling once, the following error occurs when the image is generated again
I had to release all the models and reload them in order to sample the images again