How to do hyperparameter tuning with DeepCTR?
CFZhai opened this issue · 4 comments
CFZhai commented
e.g, Could you show an example of how to do hyperparameter tuning with DeepFM?
thank you!
alibugra commented
I suggest you to use Hyperopt. http://hyperopt.github.io/hyperopt/
CFZhai commented
Do you have any example of using Hyperopt and DeepCTR together? Thank you, Alibugra!
alibugra commented
I prepared an example via the file "examples/run_classification_criteo.py". In this file, you can delete the code where the model part is defined (from Line 54 to Line 66) and then add the following code.
def objective_function(param_space):
dnn_hidden_units = param_space["dnn_hidden_units"]
dnn_dropout = param_space["dnn_dropout"]
model = DeepFM(linear_feature_columns=linear_feature_columns, dnn_feature_columns=dnn_feature_columns,
task='binary',
dnn_hidden_units=dnn_hidden_units, dnn_dropout=dnn_dropout,
l2_reg_embedding=1e-5, device=device)
model.compile("adagrad", "binary_crossentropy",
metrics=["binary_crossentropy", "auc"], )
history = model.fit(train_model_input, train[target].values, batch_size=32, epochs=10, verbose=2,
validation_split=0.2)
pred_ans = model.predict(test_model_input, 256)
print("")
print("test LogLoss", round(log_loss(test[target].values, pred_ans), 4))
auc = round(roc_auc_score(test[target].values, pred_ans), 4)
print("test AUC", auc)
return {
"loss": -auc,
"status": STATUS_OK,
"dnn_hidden_units": dnn_hidden_units,
"dnn_dropout": dnn_dropout
}
trials = Trials()
param_space = {
"dnn_hidden_units": hp.choice("dnn_hidden_units",
[(128, 128), (256, 256)]),
"dnn_dropout": hp.choice("dnn_dropout", [0, 0.1])
}
best = fmin(fn=objective_function, space=param_space,
algo=tpe.suggest, max_evals=20, trials=trials)
print("best parameter is:", str(best))
Do not forget to install Hyperopt and related libraries, also add them to the code.
import hyperopt
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
CFZhai commented
That is great! Thank you so much!