RuntimeError: Failed to run torchsummary. See above stack traces for more details. Executed layers up to: []
huynth1801 opened this issue · 4 comments
huynth1801 commented
I am trying to run the following code but keep getting an error. Can anyone help me out
This is my code :
from gc_layer import GatedConv2d
import torch
import torch.nn as nn
from base_model import BaseModel
class Discriminator(BaseModel):
def __init__(self, channels = 64):
super(Discriminator, self).__init__()
self.channels = channels
input_dim = 3
self.init_weights()
self.gt_conv1 = GatedConv2d(input_dim+1, channels, kernel_size=3, dilation=1, pad_type='zero', padding=1, activation='lrelu')
# self.lk1 = nn.LeakyReLU()
self.gt_conv2 = GatedConv2d(channels, channels*2, kernel_size=3, dilation=1, pad_type='zero',padding=1, activation='lrelu')
# self.lk2 = nn.LeakyReLU()
self.gt_conv3 = GatedConv2d(channels*2, channels*4, kernel_size=3, dilation=1, pad_type='zero', padding=1, activation='lrelu')
# self.lk3 = nn.LeakyReLU()
self.gt_conv4 = GatedConv2d(channels*4, channels*8, kernel_size=3, dilation=1, pad_type='zero', padding=1, activation='lrelu')
# self.lk4 = nn.LeakyReLU()
self.gt_conv5 = GatedConv2d(channels*8, channels*8, kernel_size=3, dilation=1, pad_type='zero', padding=1, activation='lrelu')
# self.lk5 = nn.LeakyReLU()
self.gt_conv6 = GatedConv2d(channels*8, channels*8, kernel_size=3, dilation=1, pad_type='zero', padding=1, activation='lrelu')
# self.lk6 = nn.LeakyReLU()
self.gt_conv7 = GatedConv2d(channels*8, channels*8, kernel_size=3, dilation=1, pad_type='zero', padding=1, activation='lrelu')
# self.lk7 = nn.LeakyReLU()
def forward(self, inputs):
# x_in = torch.cat([inputs, mask], dim=1)
output = self.gt_conv1(inputs)
# output = self.lk1(output)
output = self.gt_conv2(output)
# output = self.lk2(output)
output = self.gt_conv3(output)
# output = self.lk3(output)
output = self.gt_conv4(output)
# output = self.lk4(output)
output = self.gt_conv5(output)
# output = self.lk5(output)
output = self.gt_conv6(output)
# output = self.lk6(output)
output = self.gt_conv7(output)
# output = self.lk7(output)
return output
if __name__ == "__main__":
model = Discriminator()
print(model)
from torchsummary import summary
print(summary(model, (3,256,256), 1))
And this is the error:
Traceback (most recent call last):
File "/home/huynth/miniconda3/envs/inpainting/lib/python3.8/site-packages/torchsummary/torchsummary.py", line 140, in summary
_ = model.to(device)(*x, *args, **kwargs) # type: ignore[misc]
File "/home/huynth/miniconda3/envs/inpainting/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
TypeError: forward() takes 2 positional arguments but 3 were given
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/huynth/Hypergraph-Inpainting/models/discriminator.py", line 57, in <module>
print(summary(model, (3,256,256), 1))
File "/home/huynth/miniconda3/envs/inpainting/lib/python3.8/site-packages/torchsummary/torchsummary.py", line 143, in summary
raise RuntimeError(
RuntimeError: Failed to run torchsummary. See above stack traces for more details. Executed layers up to: []
Thank you!
Matheus-Schmitz commented
Following as I'm facing the same issue on an LSTM architecture
frankTian92 commented
I got the same problem
starrabb1t commented
same
lulubbb commented
same