torch.add() does not show up in the output of summary
Rander2002 opened this issue · 0 comments
torch.add() doesn't show up in the output of summary.
Is there any way to show all the correct sequential layers in the forward method of the Net?
My Net as follows.
`import torch
import torch.nn as nn
from math import sqrt
from torchsummary import summary
from torchkeras import summary
class Conv_ReLU_Block(nn.Module):
def init(self):
super(Conv_ReLU_Block, self).init()
self.conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
return self.relu(self.conv(x))
class Net(nn.Module):
def init(self):
super(Net, self).init()
self.residual_layer = self.make_layer(Conv_ReLU_Block, 18)
self.input = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)
self.output = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, sqrt(2. / n))
def make_layer(self, block, num_of_layer):
layers = []
for _ in range(num_of_layer):
layers.append(block())
return nn.Sequential(*layers)
def forward(self, x):
residual = x
out1 = self.relu(self.input(x))
out2 = self.residual_layer(out1)
out3 = self.output(out2)
out = torch.add(out3, residual)
return out
if name == 'main':
model = Net()
summary(model, input_size=(1, 33, 33))
`