sksq96/pytorch-summary

torch.add() does not show up in the output of summary

Rander2002 opened this issue · 0 comments

torch.add() doesn't show up in the output of summary.
Is there any way to show all the correct sequential layers in the forward method of the Net?
My Net as follows.

`import torch
import torch.nn as nn
from math import sqrt
from torchsummary import summary

from torchkeras import summary

class Conv_ReLU_Block(nn.Module):
def init(self):
super(Conv_ReLU_Block, self).init()
self.conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)

def forward(self, x):
    return self.relu(self.conv(x))

class Net(nn.Module):
def init(self):
super(Net, self).init()
self.residual_layer = self.make_layer(Conv_ReLU_Block, 18)
self.input = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)
self.output = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)

    for m in self.modules():
        if isinstance(m, nn.Conv2d):
            n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            m.weight.data.normal_(0, sqrt(2. / n))
            
def make_layer(self, block, num_of_layer):
    layers = []
    for _ in range(num_of_layer):
        layers.append(block())
    return nn.Sequential(*layers)

def forward(self, x):
    residual = x
    out1 = self.relu(self.input(x))
    out2 = self.residual_layer(out1)
    out3 = self.output(out2)
    out = torch.add(out3, residual)
    return out

if name == 'main':
model = Net()

summary(model, input_size=(1, 33, 33))

`