A PyTorch implementation of MoCo based on CVPR 2020 paper Momentum Contrast for Unsupervised Visual Representation Learning.
conda install pytorch=1.6.0 torchvision cudatoolkit=10.2 -c pytorch
CIFAR10
dataset is used in this repo, the dataset will be downloaded into data
directory by PyTorch
automatically.
python train.py --batch_size 1024 --epochs 50
optional arguments:
--feature_dim Feature dim for each image [default value is 128]
--m Negative sample number [default value is 4096]
--temperature Temperature used in softmax [default value is 0.5]
--momentum Momentum used for the update of memory bank [default value is 0.999]
--k Top k most similar images used to predict the label [default value is 200]
--batch_size Number of images in each mini-batch [default value is 256]
--epochs Number of sweeps over the dataset to train [default value is 500]
python linear.py --batch_size 1024 --epochs 200
optional arguments:
--model_path The pretrained model path [default value is 'results/128_4096_0.5_0.999_200_256_500_model.pth']
--batch_size Number of images in each mini-batch [default value is 256]
--epochs Number of sweeps over the dataset to train [default value is 100]
There are some difference between this implementation and official implementation, the model (ResNet50
) is trained on
one NVIDIA GeForce GTX TITAN GPU:
- No
Gaussian blur
used; Adam
optimizer with learning rate1e-3
is used to replaceSGD
optimizer;- No
Linear learning rate scaling
used.
Evaluation Protocol | Feature Dim | Momentum | Batch Size | Epoch Num | τ | K | Top1 Acc % | Top5 Acc % | Download |
---|---|---|---|---|---|---|---|---|---|
KNN | 128 | 0.999 | 256 | 500 | 0.5 | 200 | 80.9 | 99.1 | model | tex8 |
Linear | - | - | 256 | 100 | - | - | 86.3 | 99.6 | model | 6me4 |