This is a Python implementation of
Robust Attributed Graph Alignment via Joint Structure Learning and Optimal Transport
Jianheng Tang, Weiqi Zhang, Jiajin Li, Kangfei Zhao, Fugee Tsung, Jia Li
ICDE 2023 Arxiv IEEE Library
- python 3.9
- cuda 11.3
- pytorch 1.11
- dgl 0.8
- pyg 2.0.4
- scikit-learn 1.0.2
- networkx 2.8.4
- argparse 1.4.0
python SLOTAlign.py --config config/douban.json
python SLOTAlign.py --config config/dblp.json
python SLOTAlign.py --dataset cora --truncate True --edge_noise 0.5
- dataset - cora/citeseer/facebook/ppi
- edge_noise - floats between 0 and 1
python SLOTAlign.py --dataset cora --noise_type 1 --feat_noise 0.5
- dataset - cora/citeseer/facebook/ppi
- noise_type - 1: permutation, 2: truncation, 3: compression,
- feat_noise - floats between 0 and 1
The dataset and LaBSE embedding files can be downloaded from Google Drive
python run_DBP15K.py
If you use this package and find it useful, please cite our paper using the following BibTeX. Thanks! :)
@inproceedings{tang2023robust,
author={Tang, Jianheng and Zhang, Weiqi and Li, Jiajin and Zhao, Kangfei and Tsung, Fugee and Li, Jia},
booktitle = {2023 IEEE 39th International Conference on Data Engineering (ICDE)},
title = {Robust Attributed Graph Alignment via Joint Structure Learning and Optimal Transport},
pages = {1638-1651},
doi = {10.1109/ICDE55515.2023.00129},
url = {https://doi.ieeecomputersociety.org/10.1109/ICDE55515.2023.00129},
year={2023}
}