The idea of caching items for fast retrieval goes back nearly to the beginning of the computer science. We also use that idea and use a LRU cache for storing morphological analyses of surface forms. Before analyzing a surface form, we first look up to the cache, and if there is an hit, we just take the analyses from the cache. If there is a miss, we analyze the surface form and put the morphological analyses of that surface form in the LRU cache. As can be expected, the speed of the caching mechanism surely depends on the size of the cache.
You can also see Python, Java, C, C++, Swift, Js, or C# repository.
To check if you have a compatible version of Python installed, use the following command:
python -V
You can find the latest version of Python here.
Install the latest version of Git.
pip3 install NlpToolkit-DataStructure-Cy
In order to work on code, create a fork from GitHub page. Use Git for cloning the code to your local or below line for Ubuntu:
git clone <your-fork-git-link>
A directory called DataStructure will be created. Or you can use below link for exploring the code:
git clone https://github.com/starlangsoftware/DataStructure-Cy.git
Steps for opening the cloned project:
- Start IDE
- Select File | Open from main menu
- Choose
DataStructure-CY
file - Select open as project option
- Couple of seconds, dependencies will be downloaded.
CounterHashMap bir veri tipinin kaç kere geçtiğini hafızada tutmak için kullanılmaktadır.
Bir CounterHashMap yaratmak için
a = CounterHashMap()
Hafızaya veri eklemek için
put(self, key: object)
Örneğin,
a.put("ali");
Bu aşamanın ardından "ali" nin sayacı 1 olur.
Hafızaya o veriyi birden fazla kez eklemek için
putNTimes(self, key: object, N: int)
Örneğin,
a.putNTimes("veli", 5)
Bu aşamanın ardından "ali"'nin sayacı 5 olur.
Hafızada o verinin kaç kere geçtiğini bulmak için
count(self, key: object) -> int
Örneğin, "veli" nin kaç kere geçtiğini bulmak için
kacKere = a.count("veli")
Bu aşamanın ardından kacKere değişkeninin değeri 5 olur.
Hafızada hangi verinin en çok geçtiğini bulmak için
max(self) -> object
Örneğin,
kelime = a.max()
Bu aşamanın ardından kelime "veli" olur.
LRUCache veri cachelemek için kullanılan bir veri yapısıdır. LRUCache en yakın zamanda kullanılan verileri öncelikli olarak hafızada tutar. Bir LRUCache yaratmak için
LRUCache(self, cacheSize: int)
kullanılır. cacheSize burada cachelenecek verinin büyüklüğünün limitini göstermektedir.
Cache'e bir veri eklemek için
add(self, key: object, data: object)
kullanılır. data burada eklenecek veriyi, key anahtar göstergeyi göstermektedir.
Cache'de bir veri var mı diye kontrol etmek için
contains(self, key: object) -> bool
kullanılır.
Cache'deki veriyi anahtarına göre getirmek için
get(self, key: object) -> object
kullanılır.