taokong/RON

Two questions about the code

foralliance opened this issue · 0 comments

@taokong
@taokongcn

  1. 在test.py文件和paper中指出:

scores = np.tile(scores[:, 0], (imdb.num_classes, 1)).transpose() * scores

相当于给"分类(21分类)得分"乘以了"其属于物体的概率".为什么采用这种得分形式?为什么要进行这样的处理?

  1. 在anchor_target_layer.py和det_target_layer.py中,
  if len(fg_inds) > 0:
            num_bg = len(fg_inds) *  (1.0 - cfg.TRAIN.FG_FRACTION) / (cfg.TRAIN.FG_FRACTION)
        else:
            num_bg = self._batch
    
        bg_inds = np.where(all_labels == 0)[0]
        if len(bg_inds) > num_bg:
            disable_inds = npr.choice(bg_inds, size=int(len(bg_inds) - num_bg), replace=False)
            all_labels[disable_inds] = -1

感觉只要存在正样本,这个batch_size参数就没用了.这是只是保证正负样本比例是1:3,并不考虑正负样本的总数(超过256/512也可以).这样的理解对吗?

麻烦了!!