Custom layer with Concat afterwards causes an error during QAT modeling
Opened this issue · 3 comments
Prior to filing: check that this should be a bug instead of a feature request. Everything supported, including the compatible versions of TensorFlow, is listed in the overview page of each technique. For example, the overview page of quantization-aware training is here. An issue for anything not supported should be a feature request.
Describe the bug
I am building a model that returns feature embedding as an output.
I used MobileNetV3Largs as a baseline with include_top=False
option.
after the baseline, I have few layers and concat them at the end of the model.
When I tried to apply QAT on the model though, it returns the error saying:
TypeError: 'str' object is not callable
System information
TensorFlow version (installed from source or binary):
2.15.0
TensorFlow Model Optimization version (installed from source or binary):
0.7.5
Python version:
3.11.7
Describe the expected behavior
QAT model generated well.
Describe the current behavior
TypeError: 'str' object is not callable
Code to reproduce the issue
Provide a reproducible code that is the bare minimum necessary to generate the
problem.
def build_model(args, include_preprocessing=False):
IMG_SHAPE = (args.input_dim, args.input_dim, 3)
# Transfer learning model with MobileNetV3
base_model = tf.keras.applications.MobileNetV3Large(
input_shape=IMG_SHAPE,
include_top=False,
weights='imagenet',
minimalistic=True,
include_preprocessing=include_preprocessing
)
# Freeze the pre-trained model weights
base_model.trainable = False
cl1 = CustomLayer()(base_model.output)
cl1 = tf.keras.layers.Dropout(0.2, name="dropout_cl1")(cl1)
cl2 = CustomLayer()(base_model.output)
cl2 = tf.keras.layers.Dropout(0.2, name="dropout_gd2")(gd2)
cl3 = CustomLayer()(base_model.output)
cl3 = tf.keras.layers.Dropout(0.2, name="dropout_cl1")(cl3)
concat_cls = tf.keras.layers.Concatenate()([cl1, cl2, cl3])
x = tf.keras.layers.Dense(512, activation='swish')(concat_cls) # No activation on final dense layer
model = tf.keras.Model(base_model.input, x)
return model
# This is initial training loop before QAT --> this returns few epoch trained model
model = build_model(args)
model = initial_training(args, model)
def apply_quantization_to_dense(layer):
if isinstance(layer, tf.keras.layers.Dense):
return tfmot.quantization.keras.quantize_annotate_layer(layer)
return layer
annotated_model = tf.keras.models.clone_model(
model,
clone_function=apply_quantization_to_dense,
)
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
Screenshots
If applicable, add screenshots to help explain your problem.
Additional context
Add any other context about the problem here.
Thanks for your reporting.
Could you give complete script, including CustomLayer
implementation, if available?
(Reproducible and runnable Colab link is also good to communicate.)
Thanks for the response. due to the policy, I am not able to share the full code or reproducible colab.
But I can share the CustomLayer implementation I guess. Below is the one that I am using.
class CustomLayer(tf.keras.layers.Layer):
def __init__(self, p=1, **kwargs):
super(CustomLayer, self).__init__(**kwargs)
self.p = p
def call(self, inputs):
assert len(inputs.shape) == 4, 'the input tensor of CustomLayer must be the shape of [B, H, W, C]'
if self.p == 1:
return tf.reduce_mean(inputs, axis=[1, 2])
elif self.p == float('inf'):
return tf.reshape(tf.reduce_max(inputs, axis=[1, 2]), shape=[-1, inputs.shape[-1]])
else:
sum_value = tf.reduce_mean(tf.pow(inputs, self.p), axis=[1, 2])
return tf.sign(sum_value) * tf.pow(tf.abs(sum_value), 1.0 / self.p)
def get_config(self):
config = super(CustomLayer, self).get_config()
config.update({"p": self.p})
return config
please feel free to tell me if any other things are needed!
thanks,