Unsupported operations when applying tfmot
Opened this issue · 1 comments
Hi, I'm trying to apply tfmot for an implementation of BiSeNetV2, when executing tfmot.quantization.keras.quantize_model
, I meet errors with the following operations:
tf.reduce_mean: Layer tf.math.reduce_mean:<class 'tensorflow.python.keras.layers.core.TFOpLambda'> is not supported. You can quantize this layer by passing a tfmot.quantization.keras.QuantizeConfig
instance to the quantize_annotate_layer
API.
tf.nn.sigmoid: Exception has occurred: RuntimeError
Layer tf.math.sigmoid_1:<class 'tensorflow.python.keras.layers.core.TFOpLambda'> is not supported. You can quantize this layer by passing a tfmot.quantization.keras.QuantizeConfig
instance to the quantize_annotate_layer
API.
tf.image.resize: Exception has occurred: ValueError 'images' must have either 3 or 4 dimensions.
- For layer
tf.reduce_mean
andtf.nn.sigmoid
, the class istensorflow.python.keras.layers.core.TFOpLambda
, and they are failed to be executed withtfmot.quantization.keras.QuantizeConfig
. How to apply these layers to tfmot? - How to effectively apply
tf.image.resize
to tfmot model?
The followings are the settings of TensorFlow:
TensorFlow-gpu 2.4.0
tensorflow-model-optimization 0.7.1
Best Regards,
Rahn