ERROR IN EXAMPLE: movielens-1m-keras-with-horovod
VikashPeddakota999 opened this issue · 1 comments
System information
- OS Platform and Distribution: Linux Ubuntu 16.04
- TensorFlow version == 2.8.3 and was installed through pip
- TensorFlow-Recommenders-Addons version : '0.6.0-dev' and was installed through source
- Python version: 3.8.10
- Is GPU used? yes
- using "tfra/dev_container:latest-python3.8" docker image and installed from source using https://github.com/tensorflow/recommenders-addons/tree/master#installing-from-source
Describe the bug
While i was trying to replicate the tutorial, I'm getting the following error in model.fit()
`File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1021, in train_function *
return step_function(self, iterator)
File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1010, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1000, in run_step **
outputs = model.train_step(data)
File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 859, in train_step
y_pred = self(x, training=True)
File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
ValueError: Exception encountered when calling layer "dual_channels_deep_model" (type DualChannelsDeepModel).
in user code:
File "/tmp/ipykernel_187617/3872527011.py", line 193, in call *
user_latent = self.user_embedding(user_fea_info)
File "/tmp/ipykernel_187617/3872527011.py", line 69, in __call__ *
dense_emb_concat = self.dense_embedding_layer(dense_input_tensors_concat)
File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 67, in error_handler **
raise e.with_traceback(filtered_tb) from None
File "/usr/local/lib/python3.8/dist-packages/tensorflow_recommenders_addons/dynamic_embedding/python/keras/layers/embedding.py", line 626, in call
unique_embeddings = self.__alltoall_embedding_lookup__(unique_ids)
File "/usr/local/lib/python3.8/dist-packages/tensorflow_recommenders_addons/dynamic_embedding/python/keras/layers/embedding.py", line 605, in __alltoall_embedding_lookup__
gather_indices = tf.expand_dims(tf.concat(gather_indices, axis=0), axis=-1)
ValueError: Exception encountered when calling layer "user_DenseUnifiedEmbeddingLayer" (type HvdAllToAllEmbedding).
Tried to convert 'input' to a tensor and failed. Error: None values not supported.
Call arguments received:
• ids=tf.Tensor(shape=(None, 2), dtype=int32)
Call arguments received:
• features={'movie_id': 'tf.Tensor(shape=(None,), dtype=int64)', 'movie_genres': 'tf.Tensor(shape=(None,), dtype=int32)', 'user_id': 'tf.Tensor(shape=(None,), dtype=int64)', 'user_gender': 'tf.Tensor(shape=(None,), dtype=int32)', 'user_occupation_label': 'tf.Tensor(shape=(None,), dtype=int32)', 'timestamp': 'tf.Tensor(shape=(None,), dtype=int32)'}`
Code to reproduce the issue
Other info / logs
Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached.
@VikashPeddakota999 Fixed. Please check the file in PR #374