Saving model that accepts text as input fails
Jmkernes opened this issue · 7 comments
Hi,
I've built an NMT model and am trying to save it, but run into errors. I think the problem has to do with tensorflow not being able to recognize text input. To reproduce the problem, I've created a tiny program below. It loads a SentencePiece from a "tokens.model" file then creates a model that just takes text as input, and spits out the tokenization.
%%capture
!pip install tensorflow_text
import tensorflow as tf
import tensorflow_text as tf_text
proto = tf.io.gfile.GFile('tokens.model', 'rb').read()
tokenizer = tf_text.SentencepieceTokenizer(model=proto, nbest_size=1)
class MyModel(tf.keras.Model):
def __init__(self, tokenizer, **kwargs):
super().__init__(**kwargs)
self.tokenizer = tokenizer
def call(self, x):
return self.tokenizer.tokenize(x)
mm = MyModel(tokenizer)
mm('hello world!')
mm.predict('hello world!')
mm.save('temp')
Running mm = MyModel(tokenizer)
and mm.predict('hello world!')
work perfectly fine. I mention that because when saving the model I encounter the error:
ValueError: Model <main.MyModel object at 0x7f2071b13a20> cannot be saved because the input shapes have not been set. Usually, input shapes are automatically determined from calling .fit()
or .predict()
. To manually set the shapes, call model.build(input_shape)
.
I can't figure out how to remedy the issue, as I've clearly built the model and ran it. Trying to setup a build method gives me the error that tensorflow only allows that for float32 inputs.
In my more complicated model, I would generally like the pipeline Input text ---> complicated inner model workings ---> translated text; maybe I'm going about that a totally incorrect way
Below is the full error message
ValueError Traceback (most recent call last)
in ()
----> 1 mm.save('temp')
16 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in save(self, filepath, overwrite, include_optimizer, save_format, signatures, options, save_traces)
2000 # pylint: enable=line-too-long
2001 save.save_model(self, filepath, overwrite, include_optimizer, save_format,
-> 2002 signatures, options, save_traces)
2003
2004 def save_weights(self,
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/save.py in save_model(model, filepath, overwrite, include_optimizer, save_format, signatures, options, save_traces)
155 else:
156 saved_model_save.save(model, filepath, overwrite, include_optimizer,
--> 157 signatures, options, save_traces)
158
159
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/saved_model/save.py in save(model, filepath, overwrite, include_optimizer, signatures, options, save_traces)
87 with distribution_strategy_context._get_default_replica_context(): # pylint: disable=protected-access
88 with utils.keras_option_scope(save_traces):
---> 89 save_lib.save(model, filepath, signatures, options)
90
91 if not include_optimizer:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/saved_model/save.py in save(obj, export_dir, signatures, options)
1031
1032 _, exported_graph, object_saver, asset_info = _build_meta_graph(
-> 1033 obj, signatures, options, meta_graph_def)
1034 saved_model.saved_model_schema_version = constants.SAVED_MODEL_SCHEMA_VERSION
1035
/usr/local/lib/python3.6/dist-packages/tensorflow/python/saved_model/save.py in _build_meta_graph(obj, signatures, options, meta_graph_def)
1196
1197 with save_context.save_context(options):
-> 1198 return _build_meta_graph_impl(obj, signatures, options, meta_graph_def)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/saved_model/save.py in _build_meta_graph_impl(obj, signatures, options, meta_graph_def)
1131 if signatures is None:
1132 signatures = signature_serialization.find_function_to_export(
-> 1133 checkpoint_graph_view)
1134
1135 signatures, wrapped_functions = (
/usr/local/lib/python3.6/dist-packages/tensorflow/python/saved_model/signature_serialization.py in find_function_to_export(saveable_view)
73 # If the user did not specify signatures, check the root object for a function
74 # that can be made into a signature.
---> 75 functions = saveable_view.list_functions(saveable_view.root)
76 signature = functions.get(DEFAULT_SIGNATURE_ATTR, None)
77 if signature is not None:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/saved_model/save.py in list_functions(self, obj, extra_functions)
149 if obj_functions is None:
150 obj_functions = obj._list_functions_for_serialization( # pylint: disable=protected-access
--> 151 self._serialization_cache)
152 self._functions[obj] = obj_functions
153 if extra_functions:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in _list_functions_for_serialization(self, serialization_cache)
2611 self.predict_function = None
2612 functions = super(
-> 2613 Model, self)._list_functions_for_serialization(serialization_cache)
2614 self.train_function = train_function
2615 self.test_function = test_function
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py in _list_functions_for_serialization(self, serialization_cache)
3085 def _list_functions_for_serialization(self, serialization_cache):
3086 return (self._trackable_saved_model_saver
-> 3087 .list_functions_for_serialization(serialization_cache))
3088
3089 def getstate(self):
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/saved_model/base_serialization.py in list_functions_for_serialization(self, serialization_cache)
92 return {}
93
---> 94 fns = self.functions_to_serialize(serialization_cache)
95
96 # The parent AutoTrackable class saves all user-defined tf.functions, and
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/saved_model/layer_serialization.py in functions_to_serialize(self, serialization_cache)
77 def functions_to_serialize(self, serialization_cache):
78 return (self._get_serialized_attributes(
---> 79 serialization_cache).functions_to_serialize)
80
81 def _get_serialized_attributes(self, serialization_cache):
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/saved_model/layer_serialization.py in _get_serialized_attributes(self, serialization_cache)
93
94 object_dict, function_dict = self._get_serialized_attributes_internal(
---> 95 serialization_cache)
96
97 serialized_attr.set_and_validate_objects(object_dict)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/saved_model/model_serialization.py in _get_serialized_attributes_internal(self, serialization_cache)
49 # cache (i.e. this is the root level object).
50 if len(serialization_cache[constants.KERAS_CACHE_KEY]) == 1:
---> 51 default_signature = save_impl.default_save_signature(self.obj)
52
53 # Other than the default signature function, all other attributes match with
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/saved_model/save_impl.py in default_save_signature(layer)
202 def default_save_signature(layer):
203 original_losses = _reset_layer_losses(layer)
--> 204 fn = saving_utils.trace_model_call(layer)
205 fn.get_concrete_function()
206 _restore_layer_losses(original_losses)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/saving_utils.py in trace_model_call(model, input_signature)
121
122 if input_signature is None:
--> 123 raise_model_input_error(model)
124
125 # TODO(mdan): Should the model's call be autographed by default?
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/saving_utils.py in raise_model_input_error(model)
96 'set. Usually, input shapes are automatically determined from calling'
97 ' .fit()
or .predict()
. To manually set the shapes, call '
---> 98 'model.build(input_shape)
.'.format(model))
99
100
ValueError: Model <main.MyModel object at 0x7f2071b13a20> cannot be saved because the input shapes have not been set. Usually, input shapes are automatically determined from calling .fit()
or .predict()
. To manually set the shapes, call model.build(input_shape)
.
Hmm, can you create a colab showcasing this problem? I copied your code into this one and did not get the same error.
https://colab.research.google.com/drive/1zJFM1we9qha7b79MaG430QNVauRq_lrz?usp=sharing
What I did need to do was add ".to_tensor()" after tokenize. Tokenize returns a RaggedTensor, but models can only return regular Tensors at this time.
Can you make the colab public?
(Apologies for the late response. I went on leave and it looks like nobody on the team picked up this issues, possibly because they had seen I had already responded.)
Hmm, not sure if I properly made the Colab public. Does using the shared link:
https://colab.research.google.com/drive/148AZCvQTGxDTV7VHO3s1-NKnyNxFUkOF?usp=sharing
work?
(No worries! I'm more shocked you took the time to look back into this. Thanks!)
It looks like the problem is that the input you are providing is not a tensor. If you make the input a tensor first, the saving should work.
x = tf.constant(['hello world!'])
mm = MyModel_with_to_tensor_tar(tokenizer)
mm(x)
mm.save('temp_model')
"Python/Numpy style" input is often converted into tensors by the ops themselves. For example, in the WhitespaceTokenizer's tokenize method, at the beginning you will find:
input_tensor = ragged_tensor.convert_to_tensor_or_ragged_tensor(input)
This converts the Python string 'hello' into a 0-dimensional tensor with the value 'hello', ['hello'] into a 1-dimensional tensor, [['hi', 'hello'], ['bye']] into a ragged tensor, etc. So, this conversion to tensor would happen in the __call__
method. FWIU, the keras.Model is trying to determine the shape from the input before the call method is executed. However, since the input is not a tensor, it does not know how to handle it. Basically, this conversion to tensor is normally hidden from you, but in this case, you are getting bit by not creating the tensor yourself.
Also, I realized with a 0-dimensional input, the output is a uniform tensor and not ragged, so the __call__
method should actually look like:
def call(self, input_sentence):
inp = self.tokenizer.tokenize(input_sentence)
if isinstance(inp, tf.RaggedTensor):
return inp.to_tensor()
return inp
Nice, this looks good. Thanks for circling back to this!
@broken I'm doing something similar but it appears that saving the model calls it once again with an invalid input ([None, None]
).
class Model(keras.Model):
def __init__(self, tokenizer: spm.SentencePieceProcessor, embed_size: int = 32, *args, **kwargs):
super().__init__(*args, **kwargs)
self.tokenizer = tf_text.SentencepieceTokenizer(model=tokenizer, nbest_size=1)
self.embeddings = layers.Embedding(input_dim=self.tokenizer.vocab_size(), output_dim=embed_size)
def call(self, inputs, training=None, mask=None):
print(inputs)
x = inputs
x = self.tokenizer.tokenize(x)
if isinstance(x, tf.RaggedTensor):
x = x.to_tensor()
x = self.embeddings(x)
return x
and
proto = tf.io.gfile.GFile(model_path, "rb").read()
model = Model(tokenizer=proto)
embed = model(examples)
assert embed.shape[0] == len(examples)
model.save("embed_model")
I can see in the console that call()
of the model gets called with [None, None]
inside model.save()
.
Question on stackoverflow.