theanh97/Deep-Reinforcement-Learning-with-Stock-Trading
This project uses Deep Reinforcement Learning (DRL) to develop and evaluate stock trading strategies. By implementing agents like PPO, A2C, DDPG, SAC, and TD3 in a realistic trading environment with transaction costs, it aims to optimize trading decisions based on return, volatility, and Sharpe ratio.
Jupyter Notebook
Stargazers
- shenxiaoyan0826
- ibagur
- Qu-Bit
- Playgirlkaybraz11United States
- gurusuraChennai, India
- XXA222
- sperazza
- 5oclockshadow
- yhbae2997
- joseabrahamPanama
- PowZone
- MoccazioGermany
- varunguptaBengaluru
- Echo-GYX
- ddianjn
- pjbruno327
- chadqiuChina ShangHai
- DRawson5570
- lovecambi
- fredschurSão Paulo
- GwillXiamen, China
- josefeliufSantiago, Chile
- Kahuna4real
- Aheadgo
- onchiptechHyderabad, INDIA
- mosh888Manchester
- tandetatSão Paulo, Brazil
- mzeidhassan
- alexixu
- cffwxx
- bear0330
- yalishanda42Centre, Observable Universe
- ortisanSão Paulo BR
- jxonexuan
- taddeusb90
- JKaiser009Aachen