tidymodels/usemodels

`use_xgboost()` uses only 6/8 possible tuning parameters

Opened this issue · 2 comments

use_xgboost() only uses 6 of the 8 possible tuning parameters (i.e. mtry and stop_iter are not tune()d).
Is that a deliberate choice (if so, could/should be documented?) or an oversight?
Or am I just missing something?

library(usemodels)
library(tidymodels, warn.conflicts = FALSE)
data(ames)

ames <-
  ames |>
  select(
    Sale_Price,
    Neighborhood,
    Gr_Liv_Area,
    Year_Built,
    Bldg_Type,
    Latitude,
    Longitude
  ) |> 
  mutate(Sale_Price = log10(Sale_Price))

ames_split <- initial_split(ames, prop = 0.80)
ames_train <- training(ames_split)
ames_test  <- testing(ames_split)

use_xgboost(
  Sale_Price ~ Neighborhood + Gr_Liv_Area + Year_Built + Bldg_Type + Latitude + Longitude, 
  data = ames_train
)
#> xgboost_recipe <- 
#>   recipe(formula = Sale_Price ~ Neighborhood + Gr_Liv_Area + Year_Built + Bldg_Type + 
#>     Latitude + Longitude, data = ames_train) %>% 
#>   step_novel(all_nominal_predictors()) %>% 
#>   step_dummy(all_nominal_predictors(), one_hot = TRUE) %>% 
#>   step_zv(all_predictors()) 
#> 
#> xgboost_spec <- 
#>   boost_tree(trees = tune(), min_n = tune(), tree_depth = tune(), learn_rate = tune(), 
#>     loss_reduction = tune(), sample_size = tune()) %>% 
#>   set_mode("regression") %>% 
#>   set_engine("xgboost") 
#> 
#> xgboost_workflow <- 
#>   workflow() %>% 
#>   add_recipe(xgboost_recipe) %>% 
#>   add_model(xgboost_spec) 
#> 
#> set.seed(8291)
#> xgboost_tune <-
#>   tune_grid(xgboost_workflow, resamples = stop("add your rsample object"), grid = stop("add number of candidate points"))
Session info
sessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#>  setting  value
#>  version  R version 4.2.1 (2022-06-23 ucrt)
#>  os       Windows 10 x64 (build 19044)
#>  system   x86_64, mingw32
#>  ui       RTerm
#>  language en
#>  collate  German_Germany.utf8
#>  ctype    German_Germany.utf8
#>  tz       Europe/Berlin
#>  date     2022-08-12
#>  pandoc   2.18 @ C:/Program Files/RStudio/bin/quarto/bin/tools/ (via rmarkdown)
#> 
#> ─ Packages ───────────────────────────────────────────────────────────────────
#>  package      * version    date (UTC) lib source
#>  assertthat     0.2.1      2019-03-21 [1] CRAN (R 4.2.0)
#>  backports      1.4.1      2021-12-13 [1] CRAN (R 4.2.0)
#>  broom        * 1.0.0      2022-07-01 [1] CRAN (R 4.2.1)
#>  class          7.3-20     2022-01-16 [2] CRAN (R 4.2.1)
#>  cli            3.3.0      2022-04-25 [1] CRAN (R 4.2.0)
#>  codetools      0.2-18     2020-11-04 [2] CRAN (R 4.2.1)
#>  colorspace     2.0-3      2022-02-21 [1] CRAN (R 4.2.0)
#>  DBI            1.1.3      2022-06-18 [1] CRAN (R 4.2.0)
#>  dials        * 1.0.0      2022-06-14 [1] CRAN (R 4.2.0)
#>  DiceDesign     1.9        2021-02-13 [1] CRAN (R 4.2.0)
#>  digest         0.6.29     2021-12-01 [1] CRAN (R 4.2.0)
#>  dplyr        * 1.0.9      2022-04-28 [1] CRAN (R 4.2.0)
#>  ellipsis       0.3.2      2021-04-29 [1] CRAN (R 4.2.0)
#>  evaluate       0.16       2022-08-09 [1] CRAN (R 4.2.1)
#>  fansi          1.0.3      2022-03-24 [1] CRAN (R 4.2.0)
#>  fastmap        1.1.0      2021-01-25 [1] CRAN (R 4.2.0)
#>  foreach        1.5.2      2022-02-02 [1] CRAN (R 4.2.0)
#>  fs             1.5.2      2021-12-08 [1] CRAN (R 4.2.0)
#>  furrr          0.3.0      2022-05-04 [1] CRAN (R 4.2.0)
#>  future         1.27.0     2022-07-22 [1] CRAN (R 4.2.1)
#>  future.apply   1.9.0      2022-04-25 [1] CRAN (R 4.2.0)
#>  generics       0.1.3      2022-07-05 [1] CRAN (R 4.2.1)
#>  ggplot2      * 3.3.6      2022-05-03 [1] CRAN (R 4.2.0)
#>  globals        0.16.0     2022-08-05 [1] CRAN (R 4.2.1)
#>  glue           1.6.2      2022-02-24 [1] CRAN (R 4.2.0)
#>  gower          1.0.0      2022-02-03 [1] CRAN (R 4.2.0)
#>  GPfit          1.0-8      2019-02-08 [1] CRAN (R 4.2.0)
#>  gtable         0.3.0      2019-03-25 [1] CRAN (R 4.2.0)
#>  hardhat        1.2.0      2022-06-30 [1] CRAN (R 4.2.1)
#>  highr          0.9        2021-04-16 [1] CRAN (R 4.2.0)
#>  htmltools      0.5.3      2022-07-18 [1] CRAN (R 4.2.1)
#>  infer        * 1.0.2      2022-06-10 [1] CRAN (R 4.2.0)
#>  ipred          0.9-13     2022-06-02 [1] CRAN (R 4.2.0)
#>  iterators      1.0.14     2022-02-05 [1] CRAN (R 4.2.0)
#>  knitr          1.39       2022-04-26 [1] CRAN (R 4.2.0)
#>  lattice        0.20-45    2021-09-22 [2] CRAN (R 4.2.1)
#>  lava           1.6.10     2021-09-02 [1] CRAN (R 4.2.0)
#>  lhs            1.1.5      2022-03-22 [1] CRAN (R 4.2.0)
#>  lifecycle      1.0.1      2021-09-24 [1] CRAN (R 4.2.0)
#>  listenv        0.8.0      2019-12-05 [1] CRAN (R 4.2.0)
#>  lubridate      1.8.0      2021-10-07 [1] CRAN (R 4.2.0)
#>  magrittr       2.0.3      2022-03-30 [1] CRAN (R 4.2.0)
#>  MASS           7.3-58.1   2022-08-03 [1] CRAN (R 4.2.1)
#>  Matrix         1.4-1      2022-03-23 [2] CRAN (R 4.2.1)
#>  modeldata    * 1.0.0      2022-07-01 [1] CRAN (R 4.2.1)
#>  munsell        0.5.0      2018-06-12 [1] CRAN (R 4.2.0)
#>  nnet           7.3-17     2022-01-16 [2] CRAN (R 4.2.1)
#>  parallelly     1.32.1     2022-07-21 [1] CRAN (R 4.2.1)
#>  parsnip      * 1.0.0      2022-06-16 [1] CRAN (R 4.2.0)
#>  pillar         1.8.0      2022-07-18 [1] CRAN (R 4.2.1)
#>  pkgconfig      2.0.3      2019-09-22 [1] CRAN (R 4.2.0)
#>  prodlim        2019.11.13 2019-11-17 [1] CRAN (R 4.2.0)
#>  purrr        * 0.3.4      2020-04-17 [1] CRAN (R 4.2.0)
#>  R.cache        0.16.0     2022-07-21 [1] CRAN (R 4.2.1)
#>  R.methodsS3    1.8.2      2022-06-13 [1] CRAN (R 4.2.0)
#>  R.oo           1.25.0     2022-06-12 [1] CRAN (R 4.2.0)
#>  R.utils        2.12.0     2022-06-28 [1] CRAN (R 4.2.1)
#>  R6             2.5.1      2021-08-19 [1] CRAN (R 4.2.0)
#>  Rcpp           1.0.9      2022-07-08 [1] CRAN (R 4.2.1)
#>  recipes      * 1.0.1      2022-07-07 [1] CRAN (R 4.2.1)
#>  reprex         2.0.1      2021-08-05 [1] CRAN (R 4.2.0)
#>  rlang          1.0.4      2022-07-12 [1] CRAN (R 4.2.1)
#>  rmarkdown      2.14       2022-04-25 [1] CRAN (R 4.2.0)
#>  rpart          4.1.16     2022-01-24 [2] CRAN (R 4.2.1)
#>  rsample      * 1.1.0      2022-08-08 [1] CRAN (R 4.2.1)
#>  rstudioapi     0.13       2020-11-12 [1] CRAN (R 4.2.0)
#>  scales       * 1.2.0      2022-04-13 [1] CRAN (R 4.2.0)
#>  sessioninfo    1.2.2      2021-12-06 [1] CRAN (R 4.2.0)
#>  stringi        1.7.8      2022-07-11 [1] CRAN (R 4.2.1)
#>  stringr        1.4.0      2019-02-10 [1] CRAN (R 4.2.0)
#>  styler         1.7.0      2022-03-13 [1] CRAN (R 4.2.0)
#>  survival       3.4-0      2022-08-09 [1] CRAN (R 4.2.1)
#>  tibble       * 3.1.8      2022-07-22 [1] CRAN (R 4.2.1)
#>  tidymodels   * 1.0.0      2022-07-13 [1] CRAN (R 4.2.1)
#>  tidyr        * 1.2.0      2022-02-01 [1] CRAN (R 4.2.0)
#>  tidyselect     1.1.2      2022-02-21 [1] CRAN (R 4.2.0)
#>  timeDate       4021.104   2022-07-19 [1] CRAN (R 4.2.1)
#>  tune         * 1.0.0      2022-07-07 [1] CRAN (R 4.2.1)
#>  usemodels    * 0.2.0      2022-02-18 [1] CRAN (R 4.2.1)
#>  utf8           1.2.2      2021-07-24 [1] CRAN (R 4.2.0)
#>  vctrs          0.4.1      2022-04-13 [1] CRAN (R 4.2.0)
#>  withr          2.5.0      2022-03-03 [1] CRAN (R 4.2.0)
#>  workflows    * 1.0.0      2022-07-05 [1] CRAN (R 4.2.1)
#>  workflowsets * 1.0.0      2022-07-12 [1] CRAN (R 4.2.1)
#>  xfun           0.32       2022-08-10 [1] CRAN (R 4.2.1)
#>  yaml           2.3.5      2022-02-21 [1] CRAN (R 4.2.0)
#>  yardstick    * 1.0.0      2022-06-06 [1] CRAN (R 4.2.0)
#> 
#>  [1] C:/Users/Daniel.AK-HAMBURG/AppData/Local/R/win-library/4.2
#>  [2] C:/Program Files/R/R-4.2.1/library
#> 
#> ──────────────────────────────────────────────────────────────────────────────
topepo commented

Sort of deliberate. mtry requires the user to know the number of predictors (which might not be obvious). We can't make a default for that so it was left out.

For stop_iter, I view that as an alternate method for tuning. I would only tune that or trees but not both.

One alternative is to use count = TRUE as engine argument and use mtry as a proportion. Would that work?