Code for the paper :
Link : https://arxiv.org/abs/2012.04864
/Library/requirements.txt : the library for EvaLDA.
/Library/gensim.rar : the gensim which we modified.
Test data and pre-trained LDA model is in dataset/. EvaLDA.ipynb is the code.
Bert is needed, see https://github.com/hanxiao/bert-as-service/blob/master/README.md for more detail.
- Configure the environment according to the Library/requirements.txt.
- Download Library/gensim.rar, unzip to the local python third-party library path, replace the original Gensim.
- Download /dataset/ , you may need to manually modify the data and model loading in the code (EvaLDA.ipynb) according to the download path.
- Download word2vec model: https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.vec , put it in dataset/
- Before run EvaLDA.ipynb, you should first open Bert server(see the bert link above).
- Run the code.
@article{zhou2020evalda,
title={EvaLDA: Efficient Evasion Attacks Towards Latent Dirichlet Allocation},
author={Zhou, Qi and Chen, Haipeng and Zheng, Yitao and Wang, Zhen},
journal={arXiv preprint arXiv:2012.04864},
year={2020}
}