countvectorizer
There are 229 repositories under countvectorizer topic.
melodygr/grocery_recommendation
Grocery Recommendation on Instacart Data
tamanna18/ML-NLP-DL
For learning Purposes
AnupamMittal-21/Movie-Recommender-System
Unlock Your Next Favorite Film! Our NLP-powered Movie Recommendation Web App delivers tailored suggestions based on cast, genres, and production companies. Explore a seamless Streamlit interface, also, you can see the description of selected movie. and all movies list.
nikhilkr29/Email-Spam-Classifier-using-Naive-Bayes
A Naive Bayes spam/ham classifier based on Bayes' Theorem. A bunch of email subject is first used to train the classifier and then a previously unseen email subject is fed to predict whether it is Spam or Ham.
garg-priya-creator/Netflix-Recommendation-System
A web-app which can be used to get recommendations for a series/movie, the app recommends a list of media according to list of entered choices of movies/series in your preferred language using Python and Flask for backend and HTML, CSS and JavaScript for frontend.
Bakar31/Resume-Match-NLP
Hire the Perfect candidate. HackerEarth Competitions solution.
gabrielpreda/Support-Tickets-Classification
This case study shows how to create a model for text analysis and classification and deploy it as a web service in Azure cloud in order to automatically classify support tickets. This project is a proof of concept made by Microsoft (Commercial Software Engineering team) in collaboration with Endava http://endava.com/en
Bhavik-Ardeshna/Spam_SMS_Detection
Spam message detection using classifier
binnazcabuk/Sentiment-Analysis-in-Turkish-Film
Graduation Project/Sentiment Analysis in Turkish Film Reviews
Kawaljeet2001/Movie-Recommendation-System
This is the Movie Recommendation System project using a Content-Based recommender system trained on more than 5000 movies for generating movie recommendations based on user search.
mandar196/Hate_Speech_Detection-NLP
Created Hate speech detection model using Count Vectorizer & XGBoost Classifier with an Accuracy upto 0.9471, which can be used to predict tweets which are hate or non-hate.
vaitybharati/Assignment-11-Text-Mining-01-Elon-Musk
Assignment-11-Text-Mining-01-Elon-Musk, Perform sentimental analysis on the Elon-musk tweets (Exlon-musk.csv), Text Preprocessing: remove both the leading and the trailing characters, removes empty strings, because they are considered in Python as False, Joining the list into one string/text, Remove Twitter username handles from a given twitter text. (Removes @usernames), Again Joining the list into one string/text, Remove Punctuation, Remove https or url within text, Converting into Text Tokens, Tokenization, Remove Stopwords, Normalize the data, Stemming (Optional), Lemmatization, Feature Extraction, Using BoW CountVectorizer, CountVectorizer with N-grams (Bigrams & Trigrams), TF-IDF Vectorizer, Generate Word Cloud, Named Entity Recognition (NER), Emotion Mining - Sentiment Analysis.
abhi7585/Movie-Recommendation-System
Using content-based approach to construct a suggestion for films. Films based on user feedback are recommended. By the machine learning model, all connected and equivalent films are suggested for the consumer.
avannaldas/EmailsClassification
Classification of emails received on a mass distribution group
pleonova/jd-classifier
What is the difference between a data scientist and a data analyst? An NLP approach.
SudhanshuBlaze/Email-SMS-spam-detection
Used NLTK library from text pre-processing, Data Visualisation and Analysis done with matplotlib, used sklearn CountVectorizer and Tfidf transformer for feature extraction from text, then used Linear SVC algorithm to train the ML model. Got 99% accuracy.
Aman0807/NLP-in-Python-
Silicon Valley (TV Show on HBO) language analysis
buketgencaydin/Dynamic-Malware-Modelling
Malware classification using Extreme Gradient Boosting - XGBoost, CountVectorizer, TruncatedSVD
Chandrakant817/Semantic-Analysis-of-Restaurant-Reviews
Semantic Analysis of Restaurant Reviews (NLP Use Case)
chethanhn29/NLP_Projects
This is the Repository for different Natural language Processing(NLP) projects using Hugging face,Gensim, NLTK,Spacy and other Libraries
cltai9145/Multilabel-Text-Classification
Predicting Tags for Stack Overflow
ESMAaN/Amazon_Product_Reviews
Amazon Product Reviews: Sentiment Analysis with NLP
JUGG097/Kaggle-NLP-Competition-Real-or-Not
This competition is hosted by Kaggle https://www.kaggle.com/c/nlp-getting-started/overview. I participated in the competition in order to try my hands on the field of Artificial Intelligence known as Natural Language Processing.
lovpatel93/Kaggle-Spam
Spam Detection – Cluster SMS messages to “Spam” and “Ham” (Kaggle Challenge)
LunaticPrakash/Movie-Recommender
This project suggests you the list of movies based on the movie title that you have entered. It uses Count Vectorizer (Text-Feature Extraction tool) to find the relation between similar movies.
MingalievDinar/sentiment-analysis
The aim - is to develop a model that will give accurate predictions for the customer's test sample, but the training sample for is not given. It should be collected by parsing
NandakumarSG/sentiment--model-comparison
This project is to compare the F1 scores on performing sentiment analysis on reviews using various methods. We test the efficeintcy of TfidfVectorizer and CountVectrorizers when used with Multinomial Naive Bayes and SVC respectively.
rimmelasghar/Language-Detector-Model_Django
A Machine Learning Model that detects different language syntax.
samarth0174/SMS-SPAM-FILTERING
SMS SPAM FILTERING
ShubhamSharma476/Spam-Classifier-NLP
This is a machine learning project that focuses on detecting spam messages from regular messages. The project includes data cleaning and preprocessing, creating a bag of words model, and training the model using the Naive Bayes classifier. The final accuracy of the model is 98.39%.
ShubhamSharma476/Twitter_Sentiment_Analysis
I have done some Natural Language Processing on the Twitter US Airline Sentiment Dataset, which contains data for over 14000 tweets. Then I have used several classifiers namely, Support Vector Machine, Multinomial Naive Bayes, Random Forest and Decision Trees to predict the sentiment of the tweet i.e. positive, negative or neutral.
tonoy30/movie-recommender
A movie recommender system based on Content-Based Filtering using tmdb dataset
watcharap0n/m-business
linebot messengerbot @mango by fastapi
5hraddha/sentiment-analysis
An innovative system for filtering and categorizing movie reviews
anujchahal0001/LANGUAGE-DETECTION-MODEL-USING-Machine-Learning-AND-Natural-Language-Processing
"We used over 2000+ language rows to train our machine learning model, utilizing the scikit-learn library. Our model has achieved an accuracy of 95%."