ultralytics/yolov3

hello

yuhangwpk opened this issue ยท 2 comments

Search before asking

Question

hello

Additional

none

๐Ÿ‘‹ Hello @yuhangwpk, thank you for your interest in YOLOv3 ๐Ÿš€! Please visit our โญ๏ธ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution.

If this is a ๐Ÿ› Bug Report, please provide a minimum reproducible example to help us debug it.

If this is a custom training โ“ Question, please provide as much information as possible, including dataset image examples and training logs, and verify you are following our Tips for Best Training Results.

Requirements

Python>=3.7.0 with all requirements.txt installed including PyTorch>=1.7. To get started:

git clone https://github.com/ultralytics/yolov3  # clone
cd yolov3
pip install -r requirements.txt  # install

Environments

YOLOv3 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Status

YOLOv3 CI

If this badge is green, all YOLOv3 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv3 training, validation, inference, export and benchmarks on macOS, Windows, and Ubuntu every 24 hours and on every commit.

Introducing YOLOv8 ๐Ÿš€

We're excited to announce the launch of our latest state-of-the-art (SOTA) object detection model for 2023 - YOLOv8 ๐Ÿš€!

Designed to be fast, accurate, and easy to use, YOLOv8 is an ideal choice for a wide range of object detection, image segmentation and image classification tasks. With YOLOv8, you'll be able to quickly and accurately detect objects in real-time, streamline your workflows, and achieve new levels of accuracy in your projects.

Check out our YOLOv8 Docs for details and get started with:

pip install ultralytics

@yuhangwpk hi there,

How can I assist you with YOLOv3 today? If you have any questions or need help, feel free to ask.

Cheers!