some parameters are not working
Opened this issue · 3 comments
--all_time is not working
tensorboard-reporter
--run_dir ./models
--interval_hour 1
--tag "loss"
--slack_channels "#tb-report"
--all_time
usage: tensorboard-reporter [-h] --run_dir RUN_DIR --tag TAG --interval_hour
INTERVAL_HOUR --slack_channels SLACK_CHANNELS
tensorboard-reporter: error: unrecognized arguments: --all_time
--interval_hour accepts only integer,
tensorboard-reporter
--run_dir ./models
--interval_hour 0.1
--tag "loss"
--slack_channels "#tb-report"
--all_time
usage: tensorboard-reporter [-h] --run_dir RUN_DIR --tag TAG --interval_hour
INTERVAL_HOUR --slack_channels SLACK_CHANNELS
tensorboard-reporter: error: argument --interval_hour: invalid int value: '0.1'
--tag is optional from readme, but it's required
tensorboard-reporter
--run_dir ./t5-models/
--interval_hour 0
--slack_channels "#tb-report"
--all_time
usage: tensorboard-reporter [-h] --run_dir RUN_DIR --tag TAG --interval_hour
INTERVAL_HOUR --slack_channels SLACK_CHANNELS
tensorboard-reporter: error: the following arguments are required: --tag
even if pass those params,
I'v got only blank images
it runs on TensorBoard 2.3.0
Hi @YoungCholKim, these are new features added by @FarisHijazi. I forget to update package on PyPi :). Can you try again with version 0.0.4
?
sorry for the late response, can you try again with 0.0.5
?
i was able to get reports generated with:
# example from https://www.tensorflow.org/tensorboard/get_started
import tensorflow as tf
import datetime
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
def create_model():
return tf.keras.models.Sequential(
[
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation="relu"),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation="softmax"),
]
)
model = create_model()
model.compile(
optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
model.fit(
x=x_train,
y=y_train,
epochs=5,
validation_data=(x_test, y_test),
callbacks=[tensorboard_callback],
)
with this params:
$ SLACK_BOT_TOKEN="xoxb-abc-1232" tensorboard-reporter \
--run_dir ./logs --all_time \
--interval_hour 0.5 --slack_channels "#tensorboard-reports"
found 20 summaries
2 summaries groupted by tags