test on pascal voc dataset?
zimenglan-sysu-512 opened this issue · 7 comments
hi @unsky,
have u tested focal loss
in pascal voc dataset? btw, can u share your parameters? like the hyperparamter in solver.prototxt
and some parameters of rpn
and fast rcnn
?
thanks.
@zimenglan-sysu-512 ---
mxnet (faster rcnn) parameters:
MXNET_VERSION: "mxnet"
output_path: "./output/rcnn/kitti"
symbol: resnet_v1_101_rcnn_dcn
gpus: '1,2,3,4,5,6,7'
CLASS_AGNOSTIC: false
SCALES:
-
740
-
2448
default:
frequent: 100
kvstore: device
network:
pretrained: "./model/pretrained_model/resnet_v1_101"
pretrained_epoch: 0
PIXEL_MEANS:- 103.06
- 115.90
- 123.15
IMAGE_STRIDE: 0
RCNN_FEAT_STRIDE: 16
RPN_FEAT_STRIDE: 16
FIXED_PARAMS: - conv1
- bn_conv1
- res2
- bn2
- gamma
- beta
FIXED_PARAMS_SHARED: - conv1
- bn_conv1
- res2
- bn2
- res3
- bn3
- res4
- bn4
- gamma
- beta
ANCHOR_RATIOS: - 0.25
- 0.5
- 0.75
- 1
- 1.25
- 1.5
- 1.75
ANCHOR_SCALES: - 4
- 8
- 16
- 32
- 64
- 128
- 256
NUM_ANCHORS: 49
dataset:
NUM_CLASSES: 10
dataset: kitti
dataset_path: "./data/kitti"
image_set: train
root_path: "./data"
test_image_set: test
proposal: rpn
TRAIN:
lr: 0.0001
lr_step: '4.83'
warmup: false
warmup_lr: 0.005typically we will use 4000 warmup step for single GPU on VOC
warmup_step: 100
begin_epoch: 0
end_epoch: 80
model_prefix: 'rcnn_kitti'whether resume training
RESUME: false
whether flip image
FLIP: false
whether shuffle image
SHUFFLE: true
whether use OHEM
ENABLE_OHEM: false
ENABLE_FOCALLOSS: truesize of images for each device, 2 for rcnn, 1 for rpn and e2e
BATCH_IMAGES: 1
e2e changes behavior of anchor loader and metric
END2END: true
group images with similar aspect ratio
ASPECT_GROUPING: true
R-CNN
rcnn rois batch size
BATCH_ROIS: 128
BATCH_ROIS_OHEM: 128rcnn rois sampling params
FG_FRACTION: 0.25
FG_THRESH: 0.5
BG_THRESH_HI: 0.5
BG_THRESH_LO: 0.1rcnn bounding box regression params
BBOX_REGRESSION_THRESH: 0.5
BBOX_WEIGHTS:- 1.0
- 1.0
- 1.0
- 1.0
RPN anchor loader
rpn anchors batch size
RPN_BATCH_SIZE: 256
rpn anchors sampling params
RPN_FG_FRACTION: 0.5
RPN_POSITIVE_OVERLAP: 0.7
RPN_NEGATIVE_OVERLAP: 0.3
RPN_CLOBBER_POSITIVES: falserpn bounding box regression params
RPN_BBOX_WEIGHTS:
- 1.0
- 1.0
- 1.0
- 1.0
RPN_POSITIVE_WEIGHT: -1.0
used for end2end training
RPN proposal
CXX_PROPOSAL: false
RPN_NMS_THRESH: 0.7
RPN_PRE_NMS_TOP_N: 6000
RPN_POST_NMS_TOP_N: 300
RPN_MIN_SIZE: 0approximate bounding box regression
BBOX_NORMALIZATION_PRECOMPUTED: true
BBOX_MEANS:- 0.0
- 0.0
- 0.0
- 0.0
BBOX_STDS: - 0.1
- 0.1
- 0.2
- 0.2
TEST:
use rpn to generate proposal
HAS_RPN: true
size of images for each device
BATCH_IMAGES: 1
RPN proposal
CXX_PROPOSAL: false
RPN_NMS_THRESH: 0.7
RPN_PRE_NMS_TOP_N: 6000
RPN_POST_NMS_TOP_N: 300
RPN_MIN_SIZE: 0RPN generate proposal
PROPOSAL_NMS_THRESH: 0.7
PROPOSAL_PRE_NMS_TOP_N: 20000
PROPOSAL_POST_NMS_TOP_N: 2000
PROPOSAL_MIN_SIZE: 0RCNN nms
NMS: 0.75
test_epoch: 73
hi @unsky,
thanks for sharing your hyper-parameters.
hi @unsky,
can you share the kitti(10 cls)
dataset?
i have train the focal loss with doformable conv several times
i found that the mAP is lower than the origin
- lr = 0.0005,warmup_lr = 0.00005
- AP@0.5 = 0.8002,AP@0.7 = 0.6792
this is the performance on voc2007 test with training data 2012+2007 trainval
@iFighting focal loss is a method to process the imbalance examples. it is not better in the balance scene. for the level of imbalance , you must choose a suit alpha and gamma