Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis
Meissonic is a non-autoregressive mask image modeling text-to-image synthesis model that can generate high-resolution images. It is designed to run on consumer graphics cards.
Key Features:
- 🖼️ High-resolution image generation (up to 1024x1024)
- 💻 Designed to run on consumer GPUs
- 🎨 Versatile applications: text-to-image, image-to-image
git clone https://github.com/viiika/Meissonic/
cd Meissonic
conda create --name meissonic python
conda activate meissonic
pip install -r requirements.txt
git clone https://github.com/huggingface/diffusers.git
cd diffusers
pip install -e .
python app.py
python inference.py --prompt "Your creative prompt here"
python inpaint.py --mode inpaint --input_image path/to/image.jpg
python inpaint.py --mode outpaint --input_image path/to/image.jpg
Optimize performance with FP8 quantization:
Requirements:
- CUDA 12.4
- PyTorch 2.4.1
- TorchAO
Note: Windows users install TorchAO using
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cpu
Command-line inference
python inference_fp8.py --quantization fp8
Gradio for FP8 (Select Quantization Method in Advanced settings)
python app_fp8.py
Precision (Steps=64, Resolution=1024x1024) | Batch Size=1 (Avg. Time) | Memory Usage |
---|---|---|
FP32 | 13.32s | 12GB |
FP16 | 12.35s | 9.5GB |
FP8 | 12.93s | 8.7GB |
If you find this work helpful, please consider citing:
@article{bai2024meissonic,
title={Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis},
author={Bai, Jinbin and Ye, Tian and Chow, Wei and Song, Enxin and Chen, Qing-Guo and Li, Xiangtai and Dong, Zhen and Zhu, Lei and Yan, Shuicheng},
journal={arXiv preprint arXiv:2410.08261},
year={2024}
}
We thank the community and contributors for their invaluable support in developing Meissonic. We thank apolinario@multimodal.art for making Meissonic Demo. We thank @NewGenAI and @飛鷹しずか@自称文系プログラマの勉強 for making YouTube tutorials. We thank @pprp for making fp8 and int4 quantization. We thank @camenduru for making jupyter tutorial. We thank @chenxwh for making Replicate demo and api. We thank Collov Labs for reproducing Monetico.
Made with ❤️ by the MeissonFlow Research