Efficient Multi-Objective Neural Architecture Search via Tree Search Algorithms with Training-Free Metrics
An Vo, Nhat Minh Le, and Ngoc Hoang Luong
- Clone this repository
- Install packages
$ pip install -r requirements.txt
- Download NATS-Bench, put it in the
benchmark
folder and follow instructions here
To run the code, use the command below with the required arguments
python search.py --method <method_name> --dataset <dataset_name> --n_runs <number_of_runs>
Refer to main.py
for more details.
Example commands:
# TF-MOTNAS-A
python main.py --method TF-MOTNAS-A --dataset cifar10 --n_runs 30
# TF-MOTNAS-B
python main.py --method TF-MOTNAS-B --dataset cifar10 --n_runs 30
Our source code is inspired by: