wangxiumei's Stars
NLP-LOVE/ML-NLP
此项目是机器学习(Machine Learning)、深度学习(Deep Learning)、NLP面试中常考到的知识点和代码实现,也是作为一个算法工程师必会的理论基础知识。
jameslyons/python_speech_features
This library provides common speech features for ASR including MFCCs and filterbank energies.
lukas/ml-class
Machine learning lessons and teaching projects designed for engineers
curiousily/Getting-Things-Done-with-Pytorch
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoencoders, Object Detection with YOLO v5, Build your first Neural Network, Time Series forecasting for Coronavirus daily cases, Sentiment Analysis with BER
PyWavelets/pywt
PyWavelets - Wavelet Transforms in Python
seth814/Audio-Classification
Code for YouTube series: Deep Learning for Audio Classification
jonnor/machinehearing
Machine Learning applied to sound
bastamon/sound_signal_process-matlab-
语音信号处理实验教程(MATLAB源代码)
sberdevices/golos
Aastha2104/Parkinson-Disease-Prediction
Introduction Parkinson’s Disease is the second most prevalent neurodegenerative disorder after Alzheimer’s, affecting more than 10 million people worldwide. Parkinson’s is characterized primarily by the deterioration of motor and cognitive ability. There is no single test which can be administered for diagnosis. Instead, doctors must perform a careful clinical analysis of the patient’s medical history. Unfortunately, this method of diagnosis is highly inaccurate. A study from the National Institute of Neurological Disorders finds that early diagnosis (having symptoms for 5 years or less) is only 53% accurate. This is not much better than random guessing, but an early diagnosis is critical to effective treatment. Because of these difficulties, I investigate a machine learning approach to accurately diagnose Parkinson’s, using a dataset of various speech features (a non-invasive yet characteristic tool) from the University of Oxford. Why speech features? Speech is very predictive and characteristic of Parkinson’s disease; almost every Parkinson’s patient experiences severe vocal degradation (inability to produce sustained phonations, tremor, hoarseness), so it makes sense to use voice to diagnose the disease. Voice analysis gives the added benefit of being non-invasive, inexpensive, and very easy to extract clinically. Background Parkinson's Disease Parkinson’s is a progressive neurodegenerative condition resulting from the death of the dopamine containing cells of the substantia nigra (which plays an important role in movement). Symptoms include: “frozen” facial features, bradykinesia (slowness of movement), akinesia (impairment of voluntary movement), tremor, and voice impairment. Typically, by the time the disease is diagnosed, 60% of nigrostriatal neurons have degenerated, and 80% of striatal dopamine have been depleted. Performance Metrics TP = true positive, FP = false positive, TN = true negative, FN = false negative Accuracy: (TP+TN)/(P+N) Matthews Correlation Coefficient: 1=perfect, 0=random, -1=completely inaccurate Algorithms Employed Logistic Regression (LR): Uses the sigmoid logistic equation with weights (coefficient values) and biases (constants) to model the probability of a certain class for binary classification. An output of 1 represents one class, and an output of 0 represents the other. Training the model will learn the optimal weights and biases. Linear Discriminant Analysis (LDA): Assumes that the data is Gaussian and each feature has the same variance. LDA estimates the mean and variance for each class from the training data, and then uses properties of statistics (Bayes theorem , Gaussian distribution, etc) to compute the probability of a particular instance belonging to a given class. The class with the largest probability is the prediction. k Nearest Neighbors (KNN): Makes predictions about the validation set using the entire training set. KNN makes a prediction about a new instance by searching through the entire set to find the k “closest” instances. “Closeness” is determined using a proximity measurement (Euclidean) across all features. The class that the majority of the k closest instances belong to is the class that the model predicts the new instance to be. Decision Tree (DT): Represented by a binary tree, where each root node represents an input variable and a split point, and each leaf node contains an output used to make a prediction. Neural Network (NN): Models the way the human brain makes decisions. Each neuron takes in 1+ inputs, and then uses an activation function to process the input with weights and biases to produce an output. Neurons can be arranged into layers, and multiple layers can form a network to model complex decisions. Training the network involves using the training instances to optimize the weights and biases. Naive Bayes (NB): Simplifies the calculation of probabilities by assuming that all features are independent of one another (a strong but effective assumption). Employs Bayes Theorem to calculate the probabilities that the instance to be predicted is in each class, then finds the class with the highest probability. Gradient Boost (GB): Generally used when seeking a model with very high predictive performance. Used to reduce bias and variance (“error”) by combining multiple “weak learners” (not very good models) to create a “strong learner” (high performance model). Involves 3 elements: a loss function (error function) to be optimized, a weak learner (decision tree) to make predictions, and an additive model to add trees to minimize the loss function. Gradient descent is used to minimize error after adding each tree (one by one). Engineering Goal Produce a machine learning model to diagnose Parkinson’s disease given various features of a patient’s speech with at least 90% accuracy and/or a Matthews Correlation Coefficient of at least 0.9. Compare various algorithms and parameters to determine the best model for predicting Parkinson’s. Dataset Description Source: the University of Oxford 195 instances (147 subjects with Parkinson’s, 48 without Parkinson’s) 22 features (elements that are possibly characteristic of Parkinson’s, such as frequency, pitch, amplitude / period of the sound wave) 1 label (1 for Parkinson’s, 0 for no Parkinson’s) Project Pipeline pipeline Summary of Procedure Split the Oxford Parkinson’s Dataset into two parts: one for training, one for validation (evaluate how well the model performs) Train each of the following algorithms with the training set: Logistic Regression, Linear Discriminant Analysis, k Nearest Neighbors, Decision Tree, Neural Network, Naive Bayes, Gradient Boost Evaluate results using the validation set Repeat for the following training set to validation set splits: 80% training / 20% validation, 75% / 25%, and 70% / 30% Repeat for a rescaled version of the dataset (scale all the numbers in the dataset to a range from 0 to 1: this helps to reduce the effect of outliers) Conduct 5 trials and average the results Data a_o a_r m_o m_r Data Analysis In general, the models tended to perform the best (both in terms of accuracy and Matthews Correlation Coefficient) on the rescaled dataset with a 75-25 train-test split. The two highest performing algorithms, k Nearest Neighbors and the Neural Network, both achieved an accuracy of 98%. The NN achieved a MCC of 0.96, while KNN achieved a MCC of 0.94. These figures outperform most existing literature and significantly outperform current methods of diagnosis. Conclusion and Significance These robust results suggest that a machine learning approach can indeed be implemented to significantly improve diagnosis methods of Parkinson’s disease. Given the necessity of early diagnosis for effective treatment, my machine learning models provide a very promising alternative to the current, rather ineffective method of diagnosis. Current methods of early diagnosis are only 53% accurate, while my machine learning model produces 98% accuracy. This 45% increase is critical because an accurate, early diagnosis is needed to effectively treat the disease. Typically, by the time the disease is diagnosed, 60% of nigrostriatal neurons have degenerated, and 80% of striatal dopamine have been depleted. With an earlier diagnosis, much of this degradation could have been slowed or treated. My results are very significant because Parkinson’s affects over 10 million people worldwide who could benefit greatly from an early, accurate diagnosis. Not only is my machine learning approach more accurate in terms of diagnostic accuracy, it is also more scalable, less expensive, and therefore more accessible to people who might not have access to established medical facilities and professionals. The diagnosis is also much simpler, requiring only a 10-15 second voice recording and producing an immediate diagnosis. Future Research Given more time and resources, I would investigate the following: Create a mobile application which would allow the user to record his/her voice, extract the necessary vocal features, and feed it into my machine learning model to diagnose Parkinson’s. Use larger datasets in conjunction with the University of Oxford dataset. Tune and improve my models even further to achieve even better results. Investigate different structures and types of neural networks. Construct a novel algorithm specifically suited for the prediction of Parkinson’s. Generalize my findings and algorithms for all types of dementia disorders, such as Alzheimer’s. References Bind, Shubham. "A Survey of Machine Learning Based Approaches for Parkinson Disease Prediction." International Journal of Computer Science and Information Technologies 6 (2015): n. pag. International Journal of Computer Science and Information Technologies. 2015. Web. 8 Mar. 2017. Brooks, Megan. "Diagnosing Parkinson's Disease Still Challenging." Medscape Medical News. National Institute of Neurological Disorders, 31 July 2014. Web. 20 Mar. 2017. Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection', Little MA, McSharry PE, Roberts SJ, Costello DAE, Moroz IM. BioMedical Engineering OnLine 2007, 6:23 (26 June 2007) Hashmi, Sumaiya F. "A Machine Learning Approach to Diagnosis of Parkinson’s Disease."Claremont Colleges Scholarship. Claremont College, 2013. Web. 10 Mar. 2017. Karplus, Abraham. "Machine Learning Algorithms for Cancer Diagnosis." Machine Learning Algorithms for Cancer Diagnosis (n.d.): n. pag. Mar. 2012. Web. 20 Mar. 2017. Little, Max. "Parkinsons Data Set." UCI Machine Learning Repository. University of Oxford, 26 June 2008. Web. 20 Feb. 2017. Ozcift, Akin, and Arif Gulten. "Classifier Ensemble Construction with Rotation Forest to Improve Medical Diagnosis Performance of Machine Learning Algorithms." Computer Methods and Programs in Biomedicine 104.3 (2011): 443-51. Semantic Scholar. 2011. Web. 15 Mar. 2017. "Parkinson’s Disease Dementia." UCI MIND. N.p., 19 Oct. 2015. Web. 17 Feb. 2017. Salvatore, C., A. Cerasa, I. Castiglioni, F. Gallivanone, A. Augimeri, M. Lopez, G. Arabia, M. Morelli, M.c. Gilardi, and A. Quattrone. "Machine Learning on Brain MRI Data for Differential Diagnosis of Parkinson's Disease and Progressive Supranuclear Palsy."Journal of Neuroscience Methods 222 (2014): 230-37. 2014. Web. 18 Mar. 2017. Shahbakhi, Mohammad, Danial Taheri Far, and Ehsan Tahami. "Speech Analysis for Diagnosis of Parkinson’s Disease Using Genetic Algorithm and Support Vector Machine."Journal of Biomedical Science and Engineering 07.04 (2014): 147-56. Scientific Research. July 2014. Web. 2 Mar. 2017. "Speech and Communication." Speech and Communication. Parkinson's Disease Foundation, n.d. Web. 22 Mar. 2017. Sriram, Tarigoppula V. S., M. Venkateswara Rao, G. V. Satya Narayana, and D. S. V. G. K. Kaladhar. "Diagnosis of Parkinson Disease Using Machine Learning and Data Mining Systems from Voice Dataset." SpringerLink. Springer, Cham, 01 Jan. 1970. Web. 17 Mar. 2017.
sfeng-m/tree-model
Tree model with detailed explanation
mathworks/physionet_ECG_data
This repository contains human electrocardiogram data (ECG) data used in Wavelet Toolbox machine and deep learning examples
joeyos/LicensePlateRecognition
License plate recognition
WadhwaniAI/cough-against-covid
Code for the Cough Against COVID-19 (CAC) Project by Wadhwani AI
AdityaDutt/Audio-Classification-Using-Wavelet-Transform
Classifying audio using Wavelet transform and deep learning
anisham25/parkinsons-QSVM
9-qubit quantum support vector machine to identify Parkinson's disease based upon speech indicators.
DerekDLP/Arxiv-Daily-Storage
imadtoubal/Parkinson-s-Disease-Classification-from-Speech-Data
Parkinson’s Disease Classification from Speech Data using multiple Machine Learning approaches. This was implemented using scikit-learn Python package.
Reetodeep/Detecting-Respiratory-Diseases-from-Recorded-Lung-Sounds-by-2D-CNN
Respiratory disease is among the leading causes of deaths around the world. A large amount of population is being affected regularly with some kinds of lung function disorders which eventually lead to respiratory diseases. Prevention and early detection are essential steps in managing respiratory diseases. To decrease the fatality, an efficient detection model is needed. In this paper, 2D convolutional neural network (CNN) is used to detect respiratory diseases from the recorded lung sounds at early stages. The proposed method can detect respiratory diseases like bronchiectasis, pneumonia, bronchiolitis, chronic obstructive pulmonary disease, upper respiratory tract infection, and healthy by using Mel-frequency cepstral co-efficients (MFCC). In the proposed scheme, a data frame is recorded and after extracting the statistical features from the audio clips, the data is loaded in the data frame where further classification is done using 2D CNN. The model is based on 2D CNN architecture where the number of layers is reduced to a certain extent to achieve more accuracy. The proposed model has only 13 CNN layers where each convolution layer is being associated with a pooling layer of max-pooling 2D type. The final convolution layer has a global-average pooling 2D layer. The proposed method obtained an accuracy of over 92.39%.
idiap/pddetection-reps-learning
Supervised Speech Representation Learning for Parkinson's Disease Classification
hayakshu/Classification-Analysis-Of-Parkinson-Speech-Dataset
Repository For Machine Learning Final Project
pranavn91/blockchain
BaaBaaGoat/SpectrogramGAN
用GAN生成英语单词朗读音频。这只是一个简单的尝试,用途不大。
m-peker/Detection-of-Parkinson-s-disease-with-the-images-of-Spiral-Wave-using-fast.ai
The diagnosis of Parkinson's disease in hand-drawn images of spirals and waves with fast.ai and deep learning techniques.
rshikharev/parkenson_project
Title: Parkinsons Disease Data Set Abstract: Oxford Parkinson's Disease Detection Dataset Data Set Characteristics: Multivariate Number of Instances: 197 Area: Life Attribute Characteristics: Real Number of Attributes: 23 Date Donated: 2008-06-26 Associated Tasks: Classification Missing Values? N/A Source: The dataset was created by Max Little of the University of Oxford, in collaboration with the National Centre for Voice and Speech, Denver, Colorado, who recorded the speech signals. The original study published the feature extraction methods for general voice disorders. Data Set Information: This dataset is composed of a range of biomedical voice measurements from 31 people, 23 with Parkinson's disease (PD). Each column in the table is a particular voice measure, and each row corresponds one of 195 voice recording from these individuals ("name" column). The main aim of the data is to discriminate healthy people from those with PD, according to "status" column which is set to 0 for healthy and 1 for PD. The data is in ASCII CSV format. The rows of the CSV file contain an instance corresponding to one voice recording. There are around six recordings per patient, the name of the patient is identified in the first column.For further information or to pass on comments, please contact Max Little (littlem '@' robots.ox.ac.uk). Further details are contained in the following reference -- if you use this dataset, please cite: Max A. Little, Patrick E. McSharry, Eric J. Hunter, Lorraine O. Ramig (2008), 'Suitability of dysphonia measurements for telemonitoring of Parkinson's disease', IEEE Transactions on Biomedical Engineering (to appear). Attribute Information: Matrix column entries (attributes): name - ASCII subject name and recording number MDVP:Fo(Hz) - Average vocal fundamental frequency MDVP:Fhi(Hz) - Maximum vocal fundamental frequency MDVP:Flo(Hz) - Minimum vocal fundamental frequency MDVP:Jitter(%),MDVP:Jitter(Abs),MDVP:RAP,MDVP:PPQ,Jitter:DDP - Several measures of variation in fundamental frequency MDVP:Shimmer,MDVP:Shimmer(dB),Shimmer:APQ3,Shimmer:APQ5,MDVP:APQ,Shimmer:DDA - Several measures of variation in amplitude NHR,HNR - Two measures of ratio of noise to tonal components in the voice status - Health status of the subject (one) - Parkinson's, (zero) - healthy RPDE,D2 - Two nonlinear dynamical complexity measures DFA - Signal fractal scaling exponent spread1,spread2,PPE - Three nonlinear measures of fundamental frequency variation Citation Request: If you use this dataset, please cite the following paper: 'Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection', Little MA, McSharry PE, Roberts SJ, Costello DAE, Moroz IM. BioMedical Engineering OnLine 2007, 6:23 (26 June 2007)
AmrGaballah29/Objective-and-Subjective-Speech-Quality-Assessment-of-Parkinsonian-Speech
This repository includes the scripts that were used to produce the results presented in the paper titled "Objective and Subjective Speech Quality Assessment of Amplification Devices for Patients with Parkinson’s Disease"
ayanasser/Parkinson-s-Diseases-Classification-Using-Force-Field
There's a PDF file that consists of all explanation
grahamheather/CS4970W-Capstone
A System for Collecting Background Audio Data for Parkinson's Research
OlgaSushkova/Wave-Train-Analysis
Using 2D and 3D AUC diagrams we provide improved detection accuracy of Parkinson's disease
uddipanmukherjee/cardiovascular_audio_classification
Heartbeat Sound Classification with Visual Domain Deep Neural Networks