Progressive GAN

An implementation of progressive growing of GANs, purely in TensorFlow 2.0.

The code currently supports both 2D and 3D image generation.

Install required packages

pip install -r requirements.txt

Dataset Preparation

python main.py prepare
    --dataset path/to/data
    --tf_record_save_dir path/to/save/tfrecords
    --dimensionality 2/3

If label conditioning is required, the label mapping from filename for it must be added in dataset.py

Run Training

python main.py train 
    --dataset path/to/tfrecord/file
    --run_id path/to/save 
    --dimensionality 2/3 
    --latent_size latent_size
    --kiters_per_resolution 10 
    --kiters_per_transition 10 
    --gpus '/gpu:0' '/gpu:1' '/gpu:2' '/gpu:3' 

Check opts.py for more parameters to configure for training

Add --label_size x for x labels in training

Inference

Coming soon ..

Run Tests

python main.py test 
    --test_name [interpolation | nearest_neighbor]
    --model_file path/to/model/file
    --save_dir path/to/save/results
    --latent_size latent_size
    --dimensionality 2/3 

Check opts.py for more parameters to configure for specific tests

Sample Results

2D Sagittal Mid Slices

3D T1 MRI Scans