/MedQA-ChatGLM

🛰️ 基于真实医疗对话数据在ChatGLM上进行LoRA、P-Tuning V2、Freeze、RLHF等微调,我们的眼光不止于医疗问答

Primary LanguagePython

MedQA-ChatGLM 1

1 使用的数据为cMedQA2

资源

项目 数据集 底座模型
ChatMed Consult 包含50w+在线问诊+ChatGPT回复,TCM中医药诊疗数据集未公开 LLaMA-7B
ChatDoctor HealthCareMagic-100k 包含100k+真实患者与医生对话数据集,icliniq-10k 包含10k+患者与医生对话数据集,GenMedGPT-5k 包含5k+由GPT生成的医患对话数据集 LLaMA-7B
Med-ChatGLM Huatuo-dataHuatuo-liver-cancer ChatGLM-6B
Huatuo-Llama-Med-Chinese Huatuo-dataHuatuo-liver-cancer LLaMA-7B
DoctorGLM CMD.MedDialog 、ChatDoctor项目数据集 ChatGLM-6B
MedicalGPT-zh 数据未开源 ChatGLM-6B
Dr.LLaMA LLaMA
Medical_NLP 2 - -
CMCQA 3 - -
QiZhenGPT - -
LLM-Pretrain-FineTune - -
PMC-LLaMA - LLaMA-7B
BianQue - -
medAlpaca - LLaMA-7B
MedicalGPT - -
LLM-Pretrain-FineTune - -
ShenNong-TCM-LLM - -
Sunsimiao - -
CMLM-ZhongJing - -
ZhongJing - -
Ming - -

使用

1. 安装环境

pip install -r requirements.txt

2. 微调

2.1 LoRA

CUDA_VISIBLE_DEVICES=0 python MedQA-ChatGLM/finetune.py \
                              --do_train \
                              --dataset merged-cMedQA \
                              --finetuning_type lora \
                              --output_dir ./med-lora \
                              --per_device_train_batch_size 32 \
                              --gradient_accumulation_steps 256 \
                              --lr_scheduler_type cosine \
                              --logging_steps 500 \
                              --save_steps 1000 \
                              --learning_rate 5e-5 \
                              --num_train_epochs 10.0 \
                              --fp16

2.2 Freeze微调

CUDA_VISIBLE_DEVICES=0 python MedQA-ChatGLM/finetune.py \
                              --do_train \
                              --dataset merged-cMedQA \
                              --finetuning_type freeze \
                              --output_dir ./med-freeze \
                              --per_device_train_batch_size 32 \
                              --gradient_accumulation_steps 256 \
                              --lr_scheduler_type cosine \
                              --logging_steps 500 \
                              --save_steps 1000 \
                              --learning_rate 5e-5 \
                              --num_train_epochs 10.0 \
                              --fp16

2.3 P-Turning V2

CUDA_VISIBLE_DEVICES=1 python MedQA-ChatGLM/finetune.py \
                              --do_train --dataset merged-cMedQA \
                              --finetuning_type p_tuning \
                              --output_dir ./med-p_tuning \
                              --per_device_train_batch_size 32 \
                              --gradient_accumulation_steps 256 \
                              --lr_scheduler_type cosine \
                              --logging_steps 500 \
                              --save_steps 1000 \
                              --learning_rate 5e-5 \
                              --num_train_epochs 10.0 \
                              --fp16

更多参数信息,可以查看docs/参数详解.md .

多GPU分布式训练:

# 配置分布式参数
accelerate config

# 分布式训练
accelerate launch src/finetune.py \
                  --do_train \
                  --dataset Huatuo,CMD,MedDialog,guanaco,cognition \
                  --finetuning_type lora \
                  --output_dir med-lora \
                  --per_device_train_batch_size 16 \
                  --gradient_accumulation_steps 4 \
                  --lr_scheduler_type cosine \
                  --logging_steps 10 \
                  --save_steps 1000 \
                  --learning_rate 5e-5 \
                  --num_train_epochs 3.0 \
                  --fp16 \
                  --ddp_find_unused_parameters False \ # 分布式训练时,LoRA微调需要添加防止报错
                  --plot_loss

3. 推理

3.1 可视化

CUDA_VISIBLE_DEVICES=0 python MedQA-ChatGLM/web_demo.py \
                              --checkpoint_dir med-lora/
                                              (med-freez/)
                                              (med-p_tuning/)

3.2 命令行

CUDA_VISIBLE_DEVICES=0 python MedQA-ChatGLM/infer.py \
                              --checkpoint_dir med-lora/
                                              (med-freez/)
                                              (med-p_tuning/)

4. 合并(可选)

合并模型:

CUDA_VISIBLE_DEVICES=0 python MedQA-ChatGLM/export_weights.py \
                              --finetuning_weights_path ./med-lora \
                              --save_weights_path ./save_lora

加载合并模型:

CUDA_VISIBLE_DEVICES=0 python MedQA-ChatGLM/load_export_weights.py \
                              --save_weights_path ./save_lora

结果

微调方式 模型权重 训练时长 训练轮次
LoRA MedQA-ChatGLM-LoRA 28h 10
P-Tuning V2 MedQA-ChatGLM-PTuningV2 27h 10
Freeze MedQA-ChatGLM-Freeze 28h 10
训练设置

* 实验是在Linux系统,A100 (1X, 80GB)上进行的

免责声明

本项目相关资源仅供学术研究之用,严禁用于商业用途。使用涉及第三方代码的部分时,请严格遵循相应的开源协议。模型生成的内容受模型计算、随机性和量化精度损失等因素影响,本项目无法对其准确性作出保证。本项目数据集绝大部分由模型生成,即使符合某些医学事实,也不能被用作实际医学诊断的依据。对于模型输出的任何内容,本项目不承担任何法律责任,亦不对因使用相关资源和输出结果而可能产生的任何损失承担责任。

参考

  1. https://github.com/zhangsheng93/cMedQA2
  2. https://github.com/zhangsheng93/cMedQA
  3. https://github.com/hiyouga/ChatGLM-Efficient-Tuning
  4. https://github.com/jackaduma/ChatGLM-LoRA-RLHF-PyTorch
  5. https://github.com/THUDM/ChatGLM-6B