为什么模型在预测情感极性的时候,反而传了polarities进去
WhatTong opened this issue · 3 comments
WhatTong commented
如下代码:
polarity_labels = self.get_batch_polarities(polarities)
cdm_vec = self.feature_dynamic_mask(local_context_ids, polarities)
loss_apc = loss_sen(apc_logits, polarity_labels)
yangheng95 commented
polarities 用来辅助定位aspect的位置(positions),不涉及极性的推理
WhatTong commented
不好意思还想问下,lcf-atepc.py里这段代码的作用是什么?
batch_size, max_len, feat_dim = global_context_out.shape
global_valid_output = torch.zeros(batch_size, max_len, feat_dim, dtype=torch.float32).to(self.args.device)
for i in range(batch_size):
jj = -1
for j in range(max_len):
if valid_ids[i][j].item() == 1:
jj += 1
global_valid_output[i][jj] = global_context_out[i][j]
yangheng95 commented
对于被切分成多个部分的apscet,只选用第一个位置的特征分类预测IOB