关于余弦相似度算法与分词
wilddylan opened this issue · 1 comments
wilddylan commented
分词:
** -> **
大** -> 大 傻 逼
余弦相似度算法是不是有问题,我使用其他方式计算与您这里的结果不符合,我的代码:
package DOC.Similarity;
import java.io.UnsupportedEncodingException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
/**
* 2017/7/20
* Created by dylan.
* Home: http://www.devdylan.cn
*/
public class CosineSimilarAlgorithm {
public static double getSimilarity(String doc1, String doc2) {
if (doc1 != null && doc1.trim().length() > 0 && doc2 != null
&& doc2.trim().length() > 0) {
if (Math.abs(doc2.length() - doc1.length()) > 10) {
return 0;
}
Map<Integer, int[]> AlgorithmMap = new HashMap<Integer, int[]>();
//将两个字符串中的中文字符以及出现的总数封装到,AlgorithmMap中
for (int i = 0; i < doc1.length(); i++) {
char d1 = doc1.charAt(i);
if(isHanZi(d1)){
int charIndex = getGB2312Id(d1);
if(charIndex != -1){
int[] fq = AlgorithmMap.get(charIndex);
if(fq != null && fq.length == 2){
fq[0]++;
}else {
fq = new int[2];
fq[0] = 1;
fq[1] = 0;
AlgorithmMap.put(charIndex, fq);
}
}
}
}
for (int i = 0; i < doc2.length(); i++) {
char d2 = doc2.charAt(i);
if(isHanZi(d2)){
int charIndex = getGB2312Id(d2);
if(charIndex != -1){
int[] fq = AlgorithmMap.get(charIndex);
if(fq != null && fq.length == 2){
fq[1]++;
}else {
fq = new int[2];
fq[0] = 0;
fq[1] = 1;
AlgorithmMap.put(charIndex, fq);
}
}
}
}
Iterator<Integer> iterator = AlgorithmMap.keySet().iterator();
double sqDoc1 = 0;
double sqDoc2 = 0;
double denominator = 0;
while(iterator.hasNext()){
int[] c = AlgorithmMap.get(iterator.next());
denominator += c[0]*c[1];
sqDoc1 += c[0]*c[0];
sqDoc2 += c[1]*c[1];
}
return denominator / Math.sqrt(sqDoc1*sqDoc2);
} else {
return 0;
}
}
private static boolean isHanZi(char ch) {
// 判断是否汉字
return (ch >= 0x4E00 && ch <= 0x9FA5);
}
/**
* 根据输入的Unicode字符,获取它的GB2312编码或者ascii编码,
*
* @param ch
* 输入的GB2312中文字符或者ASCII字符(128个)
* @return ch在GB2312中的位置,-1表示该字符不认识
*/
private static short getGB2312Id(char ch) {
try {
byte[] buffer = Character.toString(ch).getBytes("GB2312");
if (buffer.length != 2) {
// 正常情况下buffer应该是两个字节,否则说明ch不属于GB2312编码,故返回'?',此时说明不认识该字符
return -1;
}
int b0 = (int) (buffer[0] & 0x0FF) - 161; // 编码从A1开始,因此减去0xA1=161
int b1 = (int) (buffer[1] & 0x0FF) - 161; // 第一个字符和最后一个字符没有汉字,因此每个区只收16*6-2=94个汉字
return (short) (b0 * 94 + b1);
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
return -1;
}
}
使用您这边的余弦相似度算法貌似结果不太正确。
wilddylan commented
配置上,我这边之久丢了一个最新的搜狗词库进去,大概有111Mb左右
还是因为我这边训练的不太正确,可以给出一些建议么?