zalandoresearch/pytorch-vq-vae

dimension issue

jlian2 opened this issue · 0 comments

``
def forward(self, inputs):
# convert inputs from BCHW -> BHWC
inputs = inputs.permute(0, 2, 3, 1).contiguous()
input_shape = inputs.shape

    # Flatten input
    flat_input = inputs.view(-1, self._embedding_dim)

``
My unders understanding is: dimension of flat_input should be BHWC*embedding_dim, one dimension seems to be missing? Or you are saying number of channels equal to embedding_dim?