This is a small python binding to the [pointcloud](http://pointclouds.org/) library. Currently, the following parts of the API are wrapped (all methods operate on PointXYZ) point types
- I/O and integration; saving and loading PCD files
- segmentation
- SAC
- smoothing
- filtering
- registration (ICP, GICP, ICP_NL)
The code tries to follow the Point Cloud API, and also provides helper function for interacting with NumPy. For example (from tests/test.py)
import pcl
import numpy as np
p = pcl.PointCloud(np.array([[1, 2, 3], [3, 4, 5]], dtype=np.float32))
seg = p.make_segmenter()
seg.set_model_type(pcl.SACMODEL_PLANE)
seg.set_method_type(pcl.SAC_RANSAC)
indices, model = seg.segment()
or, for smoothing
import pcl
p = pcl.load("C/table_scene_lms400.pcd")
fil = p.make_statistical_outlier_filter()
fil.set_mean_k (50)
fil.set_std_dev_mul_thresh (1.0)
fil.filter().to_file("inliers.pcd")
Point clouds can be viewed as NumPy arrays, so modifying them is possible using all the familiar NumPy functionality:
import numpy as np
import pcl
p = pcl.PointCloud(10) # "empty" point cloud
a = np.asarray(p) # NumPy view on the cloud
a[:] = 0 # fill with zeros
print(p[3]) # prints (0.0, 0.0, 0.0)
a[:, 0] = 1 # set x coordinates to 1
print(p[3]) # prints (1.0, 0.0, 0.0)
More samples can be found in the examples directory, and in the unit tests.
This work was supported by Strawlab.
This release has been tested on Linux Ubuntu 14.04 with
- Python 2.7.6, 3.4.0, 3.5.2
- pcl 1.7.0
- Cython <= 0.25.2
and MacOS with
- Python 2.7.6, 3.4.0, 3.5.2
- pcl 1.8.1(use homebrew)
- Cython <= 0.25.2
and Windows with
- (Miniconda/Anaconda) - Python 3.4
- pcl 1.6.0(VS2010)
- Cython <= 0.25.2
- Gtk+
and Windows with
- (Miniconda/Anaconda) - Python 3.5
- pcl 1.8.1(VS2015)
- Cython <= 0.25.2
- Gtk+
PCL 1.7.0 and Ubuntu14.04 (use apt-get)
- Install PCL Module.
sudo add-apt-repository ppa:v-launchpad-jochen-sprickerhof-de/pcl -y sudo apt-get update -y sudo apt-get install libpcl-all -yPCL 1.7.2 and Ubuntu16.04 (use Debian package)
- Install PCL Module.?
sudo apt-get update -y sudo apt-get install build-essential devscripts dget -u https://launchpad.net/ubuntu/+archive/primary/+files/pcl_1.7.2-14ubuntu1.16.04.1.dsc cd pcl-1.7.2 sudo dpkg-buildpackage -r -uc -b sudo dpkg -i pcl_*.deb * current add ppa (sudo add-apt-repository -remove ppa:v-launchpad-jochen-sprickerhof-de/pcl -y) Reference `here <https://launchpad.net/ubuntu/xenial/+package/pcl-tools>`_.PCL 1.8.0 and Ubuntu16.04(build module)([CI Test Timeout])
Build Module
Reference here.
Case1. use homebrew(PCL 1.8.1 - 2017/11/13 current)
Install PCL Module.
brew tap homebrew/science
brew install pcl
Warning:
Current Installer (2017/10/02) Not generated pcl-2d-1.8.pc file.(Issue #119)
Reference PointCloudLibrary Issue.
circumvent:
copy travis/pcl-2d-1.8.pc file to /usr/local/lib/pkgconfig folder.
Case1. use PCL 1.6.0
Windows SDK 7.1
64 bitOpenNI2[(PCL Install FolderPath)\3rdParty\OpenNI\OpenNI-(win32/x64)-1.3.2-Dev.msi]
Case2. use 1.8.1
Visual Studio 2015 C++ Compiler Tools
OpenNI2[(PCL Install FolderPath)\3rdParty\OpenNI2\OpenNI-Windows-(win32/x64)-2.2.msi]
Common setting
Download file unzip. Copy bin Folder to pkg-config Folder
or execute powershell file [Install-GTKPlus.ps1].
Python Version use VisualStudio Compiler
PCL_ROOT
set PCL_ROOT=$(PCL Install FolderPath)
PATH
(pcl 1.6.0) set PATH=$(PCL_ROOT)/bin/;$(OPEN_NI_ROOT)/Tools;$(VTK_ROOT)/bin;%PATH%
(pcl 1.8.1) set PATH=$(PCL_ROOT)/bin/;$(OPEN_NI2_ROOT)/Tools;$(VTK_ROOT)/bin;%PATH%
- pip module install.
pip install --upgrade pip
pip install cython==0.25.2
pip install numpy
- instal python module
python setup.py build_ext -i
python setup.py install
windows(1.6.0/1.8.1)
Mac OSX(1.8.1)/Ubuntu14.04(1.7.0)
Point Cloud is a heavily templated API, and consequently mapping this into Python using Cython is challenging.
It is written in Cython, and implements enough hard bits of the API (from Cythons perspective, i.e the template/smart_ptr bits) to provide a foundation for someone wishing to carry on.
For deficiencies in this documentation, please consult the PCL API docs, and the PCL tutorials.