- Ubuntu 20.04 LTS
- Docker
- Pytorch & Pytorch Lightning
- Recommend install CUDA, CUDNN
cd 5GT-GAN
pip install -r requirements.txt
cd N-HiTS-5G
pip install -r requirements.txt
-
Run main.py
in config/model/GAN.yaml
- seq_len: Enter the number of sequence length for input/output of model
- latent_dim: Enter the number of random noise dimension for generator's input
- cond_dim: Enter the number of data types in train dataset
- hidden: Enter the number of output size of LSTM layer
- n_layers: Enter the number of LSTM layers
- sample_size: Enter the number of batch size of fixed_z if you want to use it
- lr: Enter the value of learning rate
in config/data/TrafficDataModule.yaml
- seq_len: Enter the same number of seq_len in GAN.yaml file
- data_path: Enter the path of data csv file
- batch_size: Enter the number of batch size for train
in config/config.yaml
- VERSION: Enter the version of experiment
- MODEL_NAME: Enter the model name for checkpoint file
-
Run inference.py
in config/checkpoint/inference.yaml
- path: Enter the path of checkpoint file
- version: Enter the version of experiment for output file
- epoch: Enter the epoch of checkpoint for output file
- batch_size: Enter the number of batch size for generate each data types
-
Run model_train.py
- dataset : Select one name for the dataset want to learn.
- datatype : Select one name for the dataset type want to learn (ul or dl).
- hyperopt_max_evals : Enter the maximum number of evaluations for hyperparameter tuning.
- experiment_id : Enter a title for the current experiment.
python3 model_train.py --dataset afreeca --datatype dl \ --hyperopt_max_evals 10 --experiment_id test_1
-
Run inference.py
- dataset : Select one name for the dataset want to learn.
- datatype : Select one name for the dataset type want to learn (ul or dl).
- experiment_id : Enter a title for the current experiment.
- size : Enter the size of the traffic you want to generate (output length = horizon * size).
python3 inference.py --dataset afreeca --datatype dl --experiment_id test_1 --size 10
-
Run evaluation.py
python3 evaluation.py
- DAEGYEOM KIM - Implementation of the N-HiTS-5G model
- MYEONGJIN KO - Implementation of the 5GT-GAN model
This project is licensed under the MIT License
@article{choi2023mlbased,
title={ML-Based 5G Traffic Generation for Practical Simulations Using Open Datasets},
author={Yong-Hoon Choi, Daegyeom Kim, Myeongjin Ko, Kyung-yul Cheon, Seungkeun Park, Yunbae Kim, Hyungoo Yoon},
journal={IEEE Communications Magazine},
year={2023},
note={To appear}
}
- Date of submission October 31, 2022.
- This work was supported by the In-stitute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00092); and in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government Ministry of Science and ICT (No. 2021R1F1A1064080).