/Keras-SegNet-Basic

SegNet-Basic with Keras

Primary LanguageJupyter NotebookMIT LicenseMIT

SegNet-Basic:


What is Segnet?

  • Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation

Segnet = (Encoder + Decoder) + Pixel-Wise Classification layer

What is SegNet-Basic?

  • "In order to analyse SegNet and compare its performance with FCN (decoder variants) we use a smaller version of SegNet, termed SegNet-Basic , which ha 4 encoders and 4 decoders. All the encoders in SegNet-Basic perform max-pooling and subsampling and the corresponding decoders upsample its input using the received max-pooling indices."

Basically it's a mini-segnet to experiment / test the architecure with convnets, such as FCN.


Steps To Run The Model:


  1. Run python model-basic.py to create segNet_basic_model for keras to use.

    • model-basic.py contains the architecure.

Dataset:


  1. In a different directory run this to download the dataset from original Implementation.

    • git clone git@github.com:alexgkendall/SegNet-Tutorial.git
    • copy the /CamVid to here, or change the DataPath in data_loader.py to the above directory
  2. The run python data_loader.py to generate these two files:

    • /data/train_data.npz/ and /data/train_label.npz
    • This will make it easy to process the model over and over, rather than waiting the data to be loaded into memory.

To Do:


[x] SegNet-Basic
[ ] SegNet
[x] Test Accuracy
[ ] Requirements

Segnet-Basic Road Scene Results:


  • Train / Test:
	Train on 367 samples, validate on 233 samples
	Epoch 101/102
	366/367 [============================>.] 
	- ETA: 0s - loss: 0.3835 - acc: 0.8737Epoch 00000: val_acc improved from -inf to 0.76367, saving model to weights.best.hdf5
	367/367 [==============================] 
	- 231s - loss: 0.3832 - acc: 0.8738 - val_loss: 0.7655 - val_acc: 0.7637
	Epoch 102/102
	366/367 [============================>.] 
	- ETA: 0s - loss: 0.3589 - acc: 0.8809Epoch 00001: val_acc did not improve
	367/367 [==============================] 
	- 231s - loss: 0.3586 - acc: 0.8810 - val_loss: 2.4447 - val_acc: 0.4478
  • Evaluation:

    acc: 85.47%

    img1

    img2