0x1D. C - Binary trees CGroup projectAlgorithmData structure

By: Alexandre Gautier
Weight: 5
Project to be done in teams of 2 people (your team: Omar Soliman)
Project will start Jul 31, 2023 6:00 AM, must end by Aug 4, 2023 6:00 AM
Checker was released at Aug 1, 2023 6:00 AM
An auto review will be launched at the deadline

Resources

Read or watch:

Binary tree (note the first line: Not to be confused with B-tree.)
Data Structure and Algorithms - Tree
Tree Traversal
Binary Search Tree
Data structures: Binary Tree

Learning Objectives

At the end of this project, you are expected to be able to explain to anyone, without the help of Google: General

What is a binary tree
What is the difference between a binary tree and a Binary Search Tree
What is the possible gain in terms of time complexity compared to linked lists
What are the depth, the height, the size of a binary tree
What are the different traversal methods to go through a binary tree
What is a complete, a full, a perfect, a balanced binary tree

Copyright - Plagiarism

You are tasked to come up with solutions for the tasks below yourself to meet with the above learning objectives.
You will not be able to meet the objectives of this or any following project by copying and pasting someone else’s work.
You are not allowed to publish any content of this project.
Any form of plagiarism is strictly forbidden and will result in removal from the program.

Requirements General

Allowed editors: vi, vim, emacs
All your files will be compiled on Ubuntu 20.04 LTS using gcc, using the options -Wall -Werror -Wextra -pedantic -std=gnu89
All your files should end with a new line
A README.md file, at the root of the folder of the project, is mandatory
Your code should use the Betty style. It will be checked using betty-style.pl and betty-doc.pl
You are not allowed to use global variables
No more than 5 functions per file
You are allowed to use the standard library
In the following examples, the main.c files are shown as examples. You can use them to test your functions, but you don’t have to push them to your repo (if you do we won’t take them into account). We will use our own main.c files at compilation. Our main.c files might be different from the one shown in the examples
The prototypes of all your functions should be included in your header file called binary_trees.h
Don’t forget to push your header file
All your header files should be include guarded

GitHub

There should be one project repository per group. If you clone/fork/whatever a project repository with the same name before the second deadline, you risk a 0% score. More Info Data structures

Please use the following data structures and types for binary trees. Don’t forget to include them in your header file. Basic Binary Tree

/**

  • struct binary_tree_s - Binary tree node
  • @n: Integer stored in the node
  • @parent: Pointer to the parent node
  • @left: Pointer to the left child node
  • @right: Pointer to the right child node */ struct binary_tree_s { int n; struct binary_tree_s *parent; struct binary_tree_s *left; struct binary_tree_s *right; };

typedef struct binary_tree_s binary_tree_t;

Binary Search Tree

typedef struct binary_tree_s bst_t;

AVL Tree

typedef struct binary_tree_s avl_t;

Max Binary Heap

typedef struct binary_tree_s heap_t;

Note: For tasks 0 to 23 (included), you have to deal with simple binary trees. They are not BSTs, thus they don’t follow any kind of rule. Print function

To match the examples in the tasks, you are given this function

This function is used only for visualization purposes. You don’t have to push it to your repo. It may not be used during the correction Tasks 0. New node mandatory

Write a function that creates a binary tree node

Prototype: binary_tree_t *binary_tree_node(binary_tree_t *parent, int value);
Where parent is a pointer to the parent node of the node to create
And value is the value to put in the new node
When created, a node does not have any child
Your function must return a pointer to the new node, or NULL on failure

alex@/tmp/binary_trees$ cat 0-main.c #include <stdlib.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root;

    root = binary_tree_node(NULL, 98);
    
    root->left = binary_tree_node(root, 12);
    root->left->left = binary_tree_node(root->left, 6);
    root->left->right = binary_tree_node(root->left, 16);
    
    root->right = binary_tree_node(root, 402);
    root->right->left = binary_tree_node(root->right, 256);
    root->right->right = binary_tree_node(root->right, 512);
    
    binary_tree_print(root);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 0-main.c 0-binary_tree_node.c -o 0-node alex@/tmp/binary_trees$ ./0-node .-------(098)-------. .--(012)--. .--(402)--. (006) (016) (256) (512) alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 0-binary_tree_node.c
  1. Insert left mandatory

Write a function that inserts a node as the left-child of another node

Prototype: binary_tree_t *binary_tree_insert_left(binary_tree_t *parent, int value);
Where parent is a pointer to the node to insert the left-child in
And value is the value to store in the new node
Your function must return a pointer to the created node, or NULL on failure or if parent is NULL
If parent already has a left-child, the new node must take its place, and the old left-child must be set as the left-child of the new node.

alex@/tmp/binary_trees$ cat 1-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    binary_tree_print(root);
    printf("\n");
    binary_tree_insert_left(root->right, 128);
    binary_tree_insert_left(root, 54);
    binary_tree_print(root);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 1-main.c 1-binary_tree_insert_left.c 0-binary_tree_node.c -o 1-left alex@/tmp/binary_trees$ ./1-left .--(098)--. (012) (402)

       .--(098)-------.
    

    .--(054) .--(402) (012) (128)
    alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 1-binary_tree_insert_left.c
  1. Insert right mandatory

Write a function that inserts a node as the right-child of another node

Prototype: binary_tree_t *binary_tree_insert_right(binary_tree_t *parent, int value);
Where parent is a pointer to the node to insert the right-child in
And value is the value to store in the new node
Your function must return a pointer to the created node, or NULL on failure or if parent is NULL
If parent already has a right-child, the new node must take its place, and the old right-child must be set as the right-child of the new node.

alex@/tmp/binary_trees$ cat 2-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    binary_tree_print(root);
    printf("\n");
    binary_tree_insert_right(root->left, 54);
    binary_tree_insert_right(root, 128);
    binary_tree_print(root);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 2-main.c 2-binary_tree_insert_right.c 0-binary_tree_node.c -o 2-right alex@/tmp/binary_trees$ ./2-right .--(098)--. (012) (402)

.-------(098)--. (012)--. (128)--. (054) (402) alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 2-binary_tree_insert_right.c
  1. Delete mandatory

Write a function that deletes an entire binary tree

Prototype: void binary_tree_delete(binary_tree_t *tree);
Where tree is a pointer to the root node of the tree to delete
If tree is NULL, do nothing

alex@/tmp/binary_trees$ cat 3-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    binary_tree_insert_right(root->left, 54);
    binary_tree_insert_right(root, 128);
    binary_tree_print(root);
    binary_tree_delete(root);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 3-main.c 3-binary_tree_delete.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 3-del alex@/tmp/binary_trees$ valgrind ./3-del ==13264== Memcheck, a memory error detector ==13264== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al. ==13264== Using Valgrind-3.10.1 and LibVEX; rerun with -h for copyright info ==13264== Command: ./3-del ==13264== .-------(098)--. (012)--. (128)--. (054) (402) ==13264== ==13264== HEAP SUMMARY: ==13264== in use at exit: 0 bytes in 0 blocks ==13264== total heap usage: 9 allocs, 9 frees, 949 bytes allocated ==13264== ==13264== All heap blocks were freed -- no leaks are possible ==13264== ==13264== For counts of detected and suppressed errors, rerun with: -v ==13264== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0) alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 3-binary_tree_delete.c
  1. Is leaf mandatory

Write a function that checks if a node is a leaf

Prototype: int binary_tree_is_leaf(const binary_tree_t *node);
Where node is a pointer to the node to check
Your function must return 1 if node is a leaf, otherwise 0
If node is NULL, return 0

alex@/tmp/binary_trees$ cat 4-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root; int ret;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    binary_tree_insert_right(root->left, 54);
    binary_tree_insert_right(root, 128);
    binary_tree_print(root);
    
    ret = binary_tree_is_leaf(root);
    printf("Is %d a leaf: %d\n", root->n, ret);
    ret = binary_tree_is_leaf(root->right);
    printf("Is %d a leaf: %d\n", root->right->n, ret);
    ret = binary_tree_is_leaf(root->right->right);
    printf("Is %d a leaf: %d\n", root->right->right->n, ret);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 4-binary_tree_is_leaf.c 4-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 4-leaf alex@/tmp/binary_trees$ ./4-leaf .-------(098)--. (012)--. (128)--. (054) (402) Is 98 a leaf: 0 Is 128 a leaf: 0 Is 402 a leaf: 1 alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 4-binary_tree_is_leaf.c
  1. Is root mandatory

Write a function that checks if a given node is a root

Prototype: int binary_tree_is_root(const binary_tree_t *node);
Where node is a pointer to the node to check
Your function must return 1 if node is a root, otherwise 0
If node is NULL, return 0

alex@/tmp/binary_trees$ cat 5-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root; int ret;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    binary_tree_insert_right(root->left, 54);
    binary_tree_insert_right(root, 128);
    binary_tree_print(root);
    
    ret = binary_tree_is_root(root);
    printf("Is %d a root: %d\n", root->n, ret);
    ret = binary_tree_is_root(root->right);
    printf("Is %d a root: %d\n", root->right->n, ret);
    ret = binary_tree_is_root(root->right->right);
    printf("Is %d a root: %d\n", root->right->right->n, ret);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 5-binary_tree_is_root.c 5-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 5-root alex@/tmp/binary_trees$ ./5-root .-------(098)--. (012)--. (128)--. (054) (402) Is 98 a root: 1 Is 128 a root: 0 Is 402 a root: 0 alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 5-binary_tree_is_root.c
  1. Pre-order traversal mandatory

Write a function that goes through a binary tree using pre-order traversal

Prototype: void binary_tree_preorder(const binary_tree_t *tree, void (*func)(int));
Where tree is a pointer to the root node of the tree to traverse
And func is a pointer to a function to call for each node. The value in the node must be passed as a parameter to this function.
If tree or func is NULL, do nothing

alex@/tmp/binary_trees$ cat 6-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • print_num - Prints a number
  • @n: Number to be printed */ void print_num(int n) { printf("%d\n", n); }

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    root->left->left = binary_tree_node(root->left, 6);
    root->left->right = binary_tree_node(root->left, 56);
    root->right->left = binary_tree_node(root->right, 256);
    root->right->right = binary_tree_node(root->right, 512);
    
    binary_tree_print(root);
    binary_tree_preorder(root, &print_num);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 6-main.c 6-binary_tree_preorder.c 0-binary_tree_node.c -o 6-pre alex@/tmp/binary_trees$ ./6-pre .-------(098)-------. .--(012)--. .--(402)--. (006) (056) (256) (512) 98 12 6 56 402 256 512 alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 6-binary_tree_preorder.c
  1. In-order traversal mandatory

Write a function that goes through a binary tree using in-order traversal

Prototype: void binary_tree_inorder(const binary_tree_t *tree, void (*func)(int));
Where tree is a pointer to the root node of the tree to traverse
And func is a pointer to a function to call for each node. The value in the node must be passed as a parameter to this function.
If tree or func is NULL, do nothing

alex@/tmp/binary_trees$ cat 7-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • print_num - Prints a number
  • @n: Number to be printed */ void print_num(int n) { printf("%d\n", n); }

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    root->left->left = binary_tree_node(root->left, 6);
    root->left->right = binary_tree_node(root->left, 56);
    root->right->left = binary_tree_node(root->right, 256);
    root->right->right = binary_tree_node(root->right, 512);
    
    binary_tree_print(root);
    binary_tree_inorder(root, &print_num);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 7-main.c 7-binary_tree_inorder.c 0-binary_tree_node.c -o 7-in alex@/tmp/binary_trees$ ./7-in .-------(098)-------. .--(012)--. .--(402)--. (006) (056) (256) (512) 6 12 56 98 256 402 512 alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 7-binary_tree_inorder.c
  1. Post-order traversal mandatory

Write a function that goes through a binary tree using post-order traversal

Prototype: void binary_tree_postorder(const binary_tree_t *tree, void (*func)(int));
Where tree is a pointer to the root node of the tree to traverse
And func is a pointer to a function to call for each node. The value in the node must be passed as a parameter to this function.
If tree or func is NULL, do nothing

alex@/tmp/binary_trees$ cat 8-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • print_num - Prints a number
  • @n: Number to be printed */ void print_num(int n) { printf("%d\n", n); }

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    root->left->left = binary_tree_node(root->left, 6);
    root->left->right = binary_tree_node(root->left, 56);
    root->right->left = binary_tree_node(root->right, 256);
    root->right->right = binary_tree_node(root->right, 512);
    
    binary_tree_print(root);
    binary_tree_postorder(root, &print_num);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 8-main.c 8-binary_tree_postorder.c 0-binary_tree_node.c -o 8-post alex@/tmp/binary_trees$ ./8-post .-------(098)-------. .--(012)--. .--(402)--. (006) (056) (256) (512) 6 56 12 256 512 402 98 alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 8-binary_tree_postorder.c
  1. Height mandatory

Write a function that measures the height of a binary tree

Prototype: size_t binary_tree_height(const binary_tree_t *tree);
Where tree is a pointer to the root node of the tree to measure the height.
If tree is NULL, your function must return 0

alex@/tmp/binary_trees$ cat 9-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root; size_t height;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    binary_tree_insert_right(root->left, 54);
    binary_tree_insert_right(root, 128);
    binary_tree_print(root);
    
    height = binary_tree_height(root);
    printf("Height from %d: %lu\n", root->n, height);
    height = binary_tree_height(root->right);
    printf("Height from %d: %lu\n", root->right->n, height);
    height = binary_tree_height(root->left->right);
    printf("Height from %d: %lu\n", root->left->right->n, height);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 9-binary_tree_height.c 9-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 9-height alex@/tmp/binary_trees$ ./9-height .-------(098)--. (012)--. (128)--. (054) (402) Height from 98: 2 Height from 128: 1 Height from 54: 0 alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 9-binary_tree_height.c
  1. Depth mandatory Write a function that measures the depth of a node in a binary tree

    Prototype: size_t binary_tree_depth(const binary_tree_t *tree);
    Where tree is a pointer to the node to measure the depth
    If tree is NULL, your function must return 0
    

alex@/tmp/binary_trees$ cat 10-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root; size_t depth;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    binary_tree_insert_right(root->left, 54);
    binary_tree_insert_right(root, 128);
    binary_tree_print(root);
    
    depth = binary_tree_depth(root);
    printf("Depth of %d: %lu\n", root->n, depth);
    depth = binary_tree_depth(root->right);
    printf("Depth of %d: %lu\n", root->right->n, depth);
    depth = binary_tree_depth(root->left->right);
    printf("Depth of %d: %lu\n", root->left->right->n, depth);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 10-binary_tree_depth.c 10-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 10-depth alex@/tmp/binary_trees$ ./10-depth .-------(098)--. (012)--. (128)--. (054) (402) Depth of 98: 0 Depth of 128: 1 Depth of 54: 2 alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 10-binary_tree_depth.c
  1. Size mandatory

Write a function that measures the size of a binary tree

Prototype: size_t binary_tree_size(const binary_tree_t *tree);
Where tree is a pointer to the root node of the tree to measure the size
If tree is NULL, the function must return 0

alex@/tmp/binary_trees$ cat 11-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root; size_t size;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    binary_tree_insert_right(root->left, 54);
    binary_tree_insert_right(root, 128);
    binary_tree_print(root);
    
    size = binary_tree_size(root);
    printf("Size of %d: %lu\n", root->n, size);
    size = binary_tree_size(root->right);
    printf("Size of %d: %lu\n", root->right->n, size);
    size = binary_tree_size(root->left->right);
    printf("Size of %d: %lu\n", root->left->right->n, size);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 11-binary_tree_size.c 11-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 11-size alex@/tmp/binary_trees$ ./11-size .-------(098)--. (012)--. (128)--. (054) (402) Size of 98: 5 Size of 128: 2 Size of 54: 1 alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 11-binary_tree_size.c
  1. Leaves mandatory

Write a function that counts the leaves in a binary tree

Prototype: size_t binary_tree_leaves(const binary_tree_t *tree);
Where tree is a pointer to the root node of the tree to count the number of leaves
If tree is NULL, the function must return 0
A NULL pointer is not a leaf

alex@/tmp/binary_trees$ cat 12-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root; size_t leaves;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    binary_tree_insert_right(root->left, 54);
    binary_tree_insert_right(root, 128);
    binary_tree_print(root);
    
    leaves = binary_tree_leaves(root);
    printf("Leaves in %d: %lu\n", root->n, leaves);
    leaves = binary_tree_leaves(root->right);
    printf("Leaves in %d: %lu\n", root->right->n, leaves);
    leaves = binary_tree_leaves(root->left->right);
    printf("Leaves in %d: %lu\n", root->left->right->n, leaves);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 12-binary_tree_leaves.c 12-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 12-leaves alex@/tmp/binary_trees$ ./12-leaves .-------(098)--. (012)--. (128)--. (054) (402) Leaves in 98: 2 Leaves in 128: 1 Leaves in 54: 1 alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 12-binary_tree_leaves.c
  1. Nodes mandatory

Write a function that counts the nodes with at least 1 child in a binary tree

Prototype: size_t binary_tree_nodes(const binary_tree_t *tree);
Where tree is a pointer to the root node of the tree to count the number of nodes
If tree is NULL, the function must return 0
A NULL pointer is not a node

alex@/tmp/binary_trees$ cat 13-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root; size_t nodes;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    binary_tree_insert_right(root->left, 54);
    binary_tree_insert_right(root, 128);
    binary_tree_print(root);
    
    nodes = binary_tree_nodes(root);
    printf("Nodes in %d: %lu\n", root->n, nodes);
    nodes = binary_tree_nodes(root->right);
    printf("Nodes in %d: %lu\n", root->right->n, nodes);
    nodes = binary_tree_nodes(root->left->right);
    printf("Nodes in %d: %lu\n", root->left->right->n, nodes);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 13-binary_tree_nodes.c 13-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 13-nodes alex@/tmp/binary_trees$ ./13-nodes .-------(098)--. (012)--. (128)--. (054) (402) Nodes in 98: 3 Nodes in 128: 1 Nodes in 54: 0 alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 13-binary_tree_nodes.c
  1. Balance factor mandatory

Write a function that measures the balance factor of a binary tree

Prototype: int binary_tree_balance(const binary_tree_t *tree);
Where tree is a pointer to the root node of the tree to measure the balance factor
If tree is NULL, return 0

alex@/tmp/binary_trees$ cat 14-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root; int balance;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    binary_tree_insert_right(root->left, 54);
    binary_tree_insert_right(root, 128);
    binary_tree_insert_left(root, 45);
    binary_tree_insert_right(root->left, 50);
    binary_tree_insert_left(root->left->left, 10);
    binary_tree_insert_left(root->left->left->left, 8);
    binary_tree_print(root);
    
    balance = binary_tree_balance(root);
    printf("Balance of %d: %+d\n", root->n, balance);
    balance = binary_tree_balance(root->right);
    printf("Balance of %d: %+d\n", root->right->n, balance);
    balance = binary_tree_balance(root->left->left->right);
    printf("Balance of %d: %+d\n", root->left->left->right->n, balance);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 14-binary_tree_balance.c 14-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c 1-binary_tree_insert_left.c -o 14-balance alex@/tmp/binary_trees$ ./14-balance .-------(098)--. .-------(045)--. (128)--. .--(012)--. (050) (402) .--(010) (054) (008) Balance of 98: +2 Balance of 128: -1 Balance of 54: +0 alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 14-binary_tree_balance.c
  1. Is full mandatory

Write a function that checks if a binary tree is full

Prototype: int binary_tree_is_full(const binary_tree_t *tree);
Where tree is a pointer to the root node of the tree to check
If tree is NULL, your function must return 0

alex@/tmp/binary_trees$ cat 15-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root; int full;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    binary_tree_insert_right(root->left, 54);
    binary_tree_insert_right(root, 128);
    root->left->left = binary_tree_node(root->left, 10);
    binary_tree_print(root);
    
    full = binary_tree_is_full(root);
    printf("Is %d full: %d\n", root->n, full);
    full = binary_tree_is_full(root->left);
    printf("Is %d full: %d\n", root->left->n, full);
    full = binary_tree_is_full(root->right);
    printf("Is %d full: %d\n", root->right->n, full);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 15-binary_tree_is_full.c 15-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 15-full alex@/tmp/binary_trees$ ./15-full .-------(098)--. .--(012)--. (128)--. (010) (054) (402) Is 98 full: 0 Is 12 full: 1 Is 128 full: 0 alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 15-binary_tree_is_full.c
  1. Is perfect mandatory

Write a function that checks if a binary tree is perfect

Prototype: int binary_tree_is_perfect(const binary_tree_t *tree);
Where tree is a pointer to the root node of the tree to check
If tree is NULL, your function must return 0

alex@/tmp/binary_trees$ cat 16-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root; int perfect;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 402);
    binary_tree_insert_right(root->left, 54);
    binary_tree_insert_right(root, 128);
    root->left->left = binary_tree_node(root->left, 10);
    root->right->left = binary_tree_node(root->right, 10);
    
    binary_tree_print(root);
    perfect = binary_tree_is_perfect(root);
    printf("Perfect: %d\n\n", perfect);
    
    root->right->right->left = binary_tree_node(root->right->right, 10);
    binary_tree_print(root);
    perfect = binary_tree_is_perfect(root);
    printf("Perfect: %d\n\n", perfect);
    
    root->right->right->right = binary_tree_node(root->right->right, 10);
    binary_tree_print(root);
    perfect = binary_tree_is_perfect(root);
    printf("Perfect: %d\n", perfect);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 16-binary_tree_is_perfect.c 16-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 16-perfect alex@/tmp/binary_trees$ ./16-perfect .-------(098)-------. .--(012)--. .--(128)--. (010) (054) (010) (402) Perfect: 1

       .-------(098)-------.
    

    .--(012)--. .--(128)-------. (010) (054) (010) .--(402) (010) Perfect: 0

       .-------(098)-------.
    

    .--(012)--. .--(128)-------. (010) (054) (010) .--(402)--. (010) (010) Perfect: 0 alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 16-binary_tree_is_perfect.c
  1. Sibling mandatory

Write a function that finds the sibling of a node

Prototype: binary_tree_t *binary_tree_sibling(binary_tree_t *node);
Where node is a pointer to the node to find the sibling
Your function must return a pointer to the sibling node
If node is NULL or the parent is NULL, return NULL
If node has no sibling, return NULL

alex@/tmp/binary_trees$ cat 17-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root; binary_tree_t *sibling;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 128);
    root->left->right = binary_tree_node(root->left, 54);
    root->right->right = binary_tree_node(root->right, 402);
    root->left->left = binary_tree_node(root->left, 10);
    root->right->left = binary_tree_node(root->right, 110);
    root->right->right->left = binary_tree_node(root->right->right, 200);
    root->right->right->right = binary_tree_node(root->right->right, 512);
    
    binary_tree_print(root);
    sibling = binary_tree_sibling(root->left);
    printf("Sibling of %d: %d\n", root->left->n, sibling->n);
    sibling = binary_tree_sibling(root->right->left);
    printf("Sibling of %d: %d\n", root->right->left->n, sibling->n);
    sibling = binary_tree_sibling(root->left->right);
    printf("Sibling of %d: %d\n", root->left->right->n, sibling->n);
    sibling = binary_tree_sibling(root);
    printf("Sibling of %d: %p\n", root->n, (void *)sibling);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 17-main.c 17-binary_tree_sibling.c 0-binary_tree_node.c -o 17-sibling alex@/tmp/binary_trees$ ./17-sibling .-------(098)-------. .--(012)--. .--(128)-------. (010) (054) (110) .--(402)--. (200) (512) Sibling of 12: 128 Sibling of 110: 402 Sibling of 54: 10 Sibling of 98: (nil) alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 17-binary_tree_sibling.c
  1. Uncle mandatory

Write a function that finds the uncle of a node

Prototype: binary_tree_t *binary_tree_uncle(binary_tree_t *node);
Where node is a pointer to the node to find the uncle
Your function must return a pointer to the uncle node
If node is NULL, return NULL
If node has no uncle, return NULL

alex@/tmp/binary_trees$ cat 18-main.c #include <stdlib.h> #include <stdio.h> #include "binary_trees.h"

/**

  • main - Entry point

  • Return: Always 0 (Success) */ int main(void) { binary_tree_t *root; binary_tree_t *uncle;

    root = binary_tree_node(NULL, 98);
    root->left = binary_tree_node(root, 12);
    root->right = binary_tree_node(root, 128);
    root->left->right = binary_tree_node(root->left, 54);
    root->right->right = binary_tree_node(root->right, 402);
    root->left->left = binary_tree_node(root->left, 10);
    root->right->left = binary_tree_node(root->right, 110);
    root->right->right->left = binary_tree_node(root->right->right, 200);
    root->right->right->right = binary_tree_node(root->right->right, 512);
    
    binary_tree_print(root);
    uncle = binary_tree_uncle(root->right->left);
    printf("Uncle of %d: %d\n", root->right->left->n, uncle->n);
    uncle = binary_tree_uncle(root->left->right);
    printf("Uncle of %d: %d\n", root->left->right->n, uncle->n);
    uncle = binary_tree_uncle(root->left);
    printf("Uncle of %d: %p\n", root->left->n, (void *)uncle);
    return (0);
    

    } alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 18-main.c 18-binary_tree_uncle.c 0-binary_tree_node.c -o 18-uncle alex@/tmp/binary_trees$ ./18-uncle .-------(098)-------. .--(012)--. .--(128)-------. (010) (054) (110) .--(402)--. (200) (512) Uncle of 110: 12 Uncle of 54: 128 Uncle of 12: (nil) alex@/tmp/binary_trees$

Repo:

GitHub repository: binary_trees
File: 18-binary_tree_uncle.c

Copyright © 2023 ALX, All rights reserved.