- Clone the repository with
git clone https://github.com/0x14d/embedding-operator-knowledge
- Open repository with
cd embedding-operator-knowledge
- Python 3.9 is required (2 options)
- Use the included dev container (requires Docker)
- Install python manually
- Create virtual environment (optional)
python -m venv ./venv
source ./venv/bin/activate
- Install python3.9-dev with
sudo apt install python3.9-dev
- Install requirements with
pip install -r requirements.txt
In order to train the embeddings & prepare the evaluation either for LinkPrediction (hits@k & AMRI) or Matches (matches@k) and the amount of iterations required execute:
python -m knowledge_infusion.compare_methods.compare_methods --config LinkPrediction --iterations 30
After generating the embeddings execute:
python -m knowledge_infusion.compare_methods.generate_output_files
for hits@k and AMRI or
python -m knowledge_infusion.compare_methods.generate_output_files
for matches@k
This will generate the resulting tables for:
- Each iteration in knowledge_infusion/compare_methods/results/iteration*/_table_format/
- all iterations combined in knowledge_infusion/compare_methods/results/_table_format/