pip3 install git+https://github.com/chris-chris/gym-super-mario
pip3 install git+https://github.com/openai/baselines
import gym
import ppaquette_gym_super_mario
env = gym.make('ppaquette/SuperMarioBros-1-1-v0')
python3 train.py
You can also customize the training with parameters.
python3 train.py --algorithm=deepq --timesteps=2000000 --log=stdout --env=ppaquette/SuperMarioBros-1-1-v0
Description | Default | Parameter Type | |
---|---|---|---|
env | Gym Environment | ppaquette/SuperMarioBros-1-1-v0 | string |
log | logging type : tensorboard, stdout | stdout | string |
algorithm | Currently, support 2 algorithms : deepq, acktr | deepq | string |
timesteps | Total training steps | 2000000 | int |
exploration_fraction | exploration fraction | 0.5 | float |
prioritized | Whether using prioritized replay for DQN | False | boolean |
dueling | Whether using dueling network for DQN | False | boolean |
num_cpu | number of agents for A3C(acktr) | 4 | int |