/HoHoNet

"HoHoNet: 360 Indoor Holistic Understanding with Latent Horizontal Features" official pytorch implementation.

Primary LanguageJupyter Notebook

HoHoNet

This is the implementation of our CVPR'21 "HoHoNet: 360 Indoor Holistic Understanding with Latent Horizontal Features ".

teaser

News

  • April 3, 2021: Release inference code, jupyter notebook and visualization tools. Guide for reproduction is also finished.
  • March 4, 2021: A new backbone HarDNet is included, which shows better speed and depth accuracy.

Pretrained weight

Links to trained weights ckpt/: download on Google drive or download on Dropbox.

Inference

In below, we use an out-of-training-distribution 360 image from PanoContext as an example.

Jupyter notebook

See infer_depth.ipynb, infer_layout.ipynb, and infer_sem.ipynb for interactive demo and visualization.

Batch inference

Run infer_depth.py/infer_layout.py to inference depth/layout. Use --cfg and --pth to specify the path to config file and pretrained weight. Specify input path with --inp. Glob pattern for a batch of files is avaiable. The results are stored into --out directory with the same filename with extention set ot .depth.png and .layout.txt.

Example for depth:

python infer_depth.py --cfg config/mp3d_depth/HOHO_depth_dct_efficienthc_TransEn1_hardnet.yaml --pth ckpt/mp3d_depth_HOHO_depth_dct_efficienthc_TransEn1_hardnet/ep60.pth --out assets/ --inp assets/pano_asmasuxybohhcj.png

Example for layout:

python infer_layout.py --cfg config/mp3d_layout/HOHO_layout_aug_efficienthc_Transen1_resnet34.yaml --pth ckpt/mp3d_layout_HOHO_layout_aug_efficienthc_Transen1_resnet34/ep300.pth --out assets/ --inp assets/pano_asmasuxybohhcj.png

Visualization tools

To visualize layout as 3D mesh, run:

python vis_layout.py --img assets/pano_asmasuxybohhcj.png --layout assets/pano_asmasuxybohhcj.layout.txt

Rendering options: --show_ceiling, --ignore_floor, --ignore_wall, --ignore_wireframe are available. Set --out to export the mesh to ply file. Set --no_vis to disable the visualization.

To visualize depth as point cloud, run:

python vis_depth.py --img assets/pano_asmasuxybohhcj.png --depth assets/pano_asmasuxybohhcj.depth.png

Rendering options: --crop_ratio, --crop_z_above.

Reproduction

Please see README_reproduction.md for the guide to:

  1. prepare the datasets for each task in our paper
  2. reproduce the training for each task
  3. reproduce the numerical results in our paper with the provided pretrained weights

Citation

Released after CVPR 2021.