IMU误差模型
误差分类
- 加速度计和陀螺仪的误差可以分为:==确定性误差==、==随机误差==
- 确定性误差可以事先标定确定,包括:bais、scale
- 随机误差通常假设噪声服从高斯分布,包括:高斯白噪声、bais随机游走... 忽略scale,只考虑高斯白噪声n和bais随机游走b:
有上标波浪线的代表的是陀螺仪的测量值
$$ \begin{aligned} {\dot{\mathbf{p}}{wb_t}} &= {\mathbf{v}^w_t} \ {\dot{\mathbf{v}}^w_t} &= {\mathbf{a}^w_t}\ {\dot{\mathbf{q}}{wb_t}} &= {\mathbf{q}_{wb_t}} {\otimes} \begin{bmatrix} 0\ {\frac{1}{2}}{\mathbf{\omega}}^{b_t}\ \end{bmatrix} \end{aligned} $$
根据上面的微分形式,可以从第
$$ \begin{aligned} {\mathbf{p}{wb_j}} &= {\mathbf{p}{wb_i}} + {{\mathbf{v}}^w_t}{{\triangle}t} + {\iint_{t{\in}[i,j]}} ( {\mathbf{q}{wb_t}} {\mathbf{a}^{b_t}} - \mathbf{g}^w ) {\delta}t^2 \ {\mathbf{v}^w_j} &= {\mathbf{v}^w_i} + {\int{t{\in}[i,j]}} ( {\mathbf{q}{wb_t}} {\mathbf{a}^{b_t}} - \mathbf{g}^w ) {\delta}t \ {\mathbf{q}{wb_j}} &= {\int_{t{\in}[i,j]}}{\mathbf{q}_{wb_t}} {\otimes} \begin{bmatrix} 0\ {\frac{1}{2}}{\mathbf{\omega}}^{b_t} \ \end{bmatrix}{\delta}t \end{aligned} $$
使用欧拉法,即两个相邻时刻
$$ \begin{aligned} {\mathbf{p}{wb{k+1}}} &= {\mathbf{p}{wb_k}} + {{\mathbf{v}}^w_t}{{\triangle}t} + {\frac{1}{2}\mathbf{a}{{\triangle}t^2}} \ {\mathbf{v}^w{k+1}} &= {\mathbf{v}^w_k} + {\mathbf{a}{{\triangle}t}} \ {\mathbf{q}{wb{k+1}}} &= {\mathbf{q}{wb{k}}} {\otimes} \begin{bmatrix} 0\ {\frac{1}{2}}{\mathbf{\omega}{\delta}t}\ \end{bmatrix} \end{aligned} $$
其中,
$$ \begin{aligned} {\mathbf{p}{wb{k+1}}} &= {\mathbf{p}{wb_k}} + {{\mathbf{v}}^w_t}{{\triangle}t} + {\frac{1}{2}\mathbf{a}{{\triangle}t^2}} \ {\mathbf{v}^w{k+1}} &= {\mathbf{v}^w_k} + {\mathbf{a}{{\triangle}t}} \ {\mathbf{q}{wb{k+1}}} &= {\mathbf{q}{wb{k}}} {\otimes} \begin{bmatrix} 0\ {\frac{1}{2}}{\mathbf{\omega}{\delta}t}\ \end{bmatrix} \end{aligned} $$
其中,
$$ \begin{aligned} {\mathbf{a}} &= {\frac{1}{2}}[{\mathbf{q}{wb_k}} ( \mathbf{a}^{b_k} - \mathbf{b}^a_k ) - {\mathbf{g}^w} + {\mathbf{q}{wb_{k+1}}} ( \mathbf{a}^{b_{k+1}} - \mathbf{b}^a_k ) - {\mathbf{g}^w}] \ {\mathbf{\omega}} &= {\frac{1}{2}}[{\mathbf{\omega}^{b_k}} - {\mathbf{b}^g_k} + {\mathbf{\omega}^{b_{k+1}}} - {\mathbf{b}^g_k}] \end{aligned} $$