IMU-Model

IMU模型

1.基本模型

IMU误差模型

误差分类

  • 加速度计和陀螺仪的误差可以分为:==确定性误差==、==随机误差==
  • 确定性误差可以事先标定确定,包括:bais、scale
  • 随机误差通常假设噪声服从高斯分布,包括:高斯白噪声、bais随机游走... 忽略scale,只考虑高斯白噪声n和bais随机游走b:

$$ \begin{aligned} {\tilde{\mathbf{\omega}}^b} &= {\mathbf{\omega}^b} + {\mathbf{b}^g} + { \mathbf{n}^g } \\ {\tilde{\mathbf{a}}^b} &= {\mathbf{q}_{bw}} ( {\mathbf{a}^w} + {\mathbf{g}^w}) + {\mathbf{b}^a} + {\mathbf{n}^a} \end{aligned} $$

有上标波浪线的代表的是陀螺仪的测量值 $\tilde{\mathbf{\omega}}^b$ 和加速度计的测量值 ${\tilde{\mathbf{a}}^b}$ 右上标 $b$ 表示的是 body坐标系, $w$ 表示世界坐标系或惯性坐标系, $a$ 表示加速度acc, $g$ 表示gyro陀螺仪。 所以位移 $p$,速度 $v$,四元数 $q$ 的微分形式如下所示, $\otimes$ 代表四元数之间的乘法。

$$ \begin{aligned} {\dot{\mathbf{p}}{wb_t}} &= {\mathbf{v}^w_t} \ {\dot{\mathbf{v}}^w_t} &= {\mathbf{a}^w_t}\ {\dot{\mathbf{q}}{wb_t}} &= {\mathbf{q}_{wb_t}} {\otimes} \begin{bmatrix} 0\ {\frac{1}{2}}{\mathbf{\omega}}^{b_t}\ \end{bmatrix} \end{aligned} $$

2.连续时间下IMU运动模型

根据上面的微分形式,可以从第 $i$ 个时刻的位 $p_{wb_j}$ ,速度 ${\mathbf{v}^w_i}$ ,四元数 $q_{wb_i}$ 通过IMU的测量值进行积分,得到第 $j$ 时刻的位移( $p_{wb_j}$ )、速度( $v^w_j$ ) 、四元数( $q_{wb_j}$ )。

$$ \begin{aligned} {\mathbf{p}{wb_j}} &= {\mathbf{p}{wb_i}} + {{\mathbf{v}}^w_t}{{\triangle}t} + {\iint_{t{\in}[i,j]}} ( {\mathbf{q}{wb_t}} {\mathbf{a}^{b_t}} - \mathbf{g}^w ) {\delta}t^2 \ {\mathbf{v}^w_j} &= {\mathbf{v}^w_i} + {\int{t{\in}[i,j]}} ( {\mathbf{q}{wb_t}} {\mathbf{a}^{b_t}} - \mathbf{g}^w ) {\delta}t \ {\mathbf{q}{wb_j}} &= {\int_{t{\in}[i,j]}}{\mathbf{q}_{wb_t}} {\otimes} \begin{bmatrix} 0\ {\frac{1}{2}}{\mathbf{\omega}}^{b_t} \ \end{bmatrix}{\delta}t \end{aligned} $$

3.运动模型的离散积分--欧拉法

使用欧拉法,即两个相邻时刻 $k$$k+1$ 的位姿是用第$k$时刻的测量值 $\mathbf{a}$, ${\mathbf{\omega}}$ 来计算的

$$ \begin{aligned} {\mathbf{p}{wb{k+1}}} &= {\mathbf{p}{wb_k}} + {{\mathbf{v}}^w_t}{{\triangle}t} + {\frac{1}{2}\mathbf{a}{{\triangle}t^2}} \ {\mathbf{v}^w{k+1}} &= {\mathbf{v}^w_k} + {\mathbf{a}{{\triangle}t}} \ {\mathbf{q}{wb{k+1}}} &= {\mathbf{q}{wb{k}}} {\otimes} \begin{bmatrix} 0\ {\frac{1}{2}}{\mathbf{\omega}{\delta}t}\ \end{bmatrix} \end{aligned} $$

其中,

$$ \begin{aligned} {\mathbf{a}} &= {\mathbf{q}_{wb_k}} ( \mathbf{a}^{b_k} - \mathbf{b}^a_k ) - {\mathbf{g}^w} \\ {\mathbf{\omega}} &= {\mathbf{\omega}^{b_k}} - {\mathbf{b}^g_k} \end{aligned} $$

4.运动模型的离散积分--中值积分法

$$ \begin{aligned} {\mathbf{p}{wb{k+1}}} &= {\mathbf{p}{wb_k}} + {{\mathbf{v}}^w_t}{{\triangle}t} + {\frac{1}{2}\mathbf{a}{{\triangle}t^2}} \ {\mathbf{v}^w{k+1}} &= {\mathbf{v}^w_k} + {\mathbf{a}{{\triangle}t}} \ {\mathbf{q}{wb{k+1}}} &= {\mathbf{q}{wb{k}}} {\otimes} \begin{bmatrix} 0\ {\frac{1}{2}}{\mathbf{\omega}{\delta}t}\ \end{bmatrix} \end{aligned} $$

其中,

$$ \begin{aligned} {\mathbf{a}} &= {\frac{1}{2}}[{\mathbf{q}{wb_k}} ( \mathbf{a}^{b_k} - \mathbf{b}^a_k ) - {\mathbf{g}^w} + {\mathbf{q}{wb_{k+1}}} ( \mathbf{a}^{b_{k+1}} - \mathbf{b}^a_k ) - {\mathbf{g}^w}] \ {\mathbf{\omega}} &= {\frac{1}{2}}[{\mathbf{\omega}^{b_k}} - {\mathbf{b}^g_k} + {\mathbf{\omega}^{b_{k+1}}} - {\mathbf{b}^g_k}] \end{aligned} $$