Official PyTorch Implementation of paper "A Joint Training Framework for Learning with Noisy Labels".
Paper "A Joint Training Framework for Learning with Noisy Labels" is accepted to SCIENTIA SINICA Informationis 2023.
论文 “面向标签噪声的联合训练框架” 被 **科学-信息科学 2023 接收.
For CIFAR-10, warm_up = 10
,model = resnet18
For CIFAR-100, warm_up = 30
,model = resnet34
Noise Labels Settings : CIFAR-10 & CIFAR-100 (sym 0.2, sym 0.5, pair 0.4, instance 0.2, instance 0.4)
python main.py --dataset cifar10 --noise_mode sym --r 0.2 --penal_coeff 0.3 --T 3 --threshold 0.3 --main_type base --gpuid 0
More information can be found in "/code/run.sh"
Note that the code refers to Dividemix (ICLR 2020) and Self-Filtering (ECCV 2022).
Please kindly cite our work if this work is helpful for your research.
@article{:/publisher/Science China Press/journal/SCIENTIA SINICA Informationis///10.1360/SSI-2022-0395,
author = "wei qi,sun haoliang,yin yilong,ma yuling",
title = "面向标签噪声的联合训练框架",
journal = "SCIENTIA SINICA Informationis",
year = "2023",
pages = "-",
url = "http://www.sciengine.com/publisher/Science China Press/journal/SCIENTIA SINICA Informationis///10.1360/SSI-2022-0395,
doi = "https://doi.org/10.1360/SSI-2022-0395"
}