/SNSCL

Pytorch implementation for CVPR 2023 paper "Fine-Grianed Classification with Noisy Labels".

Primary LanguagePython

SNSCL

PyTorch Implementation of SNSCL (accepted to CVPR 2023).

1. Environment settings

Python 3.8, Pytorch 1.11, CUDA 11.1

2. Dataset

Before running the code, you should create a fold '/dataset/{}' and download datasets from following links.

   Stanford Dog: http://vision.stanford.edu/aditya86/ImageNetDogs/
   Stanford Car: https://www.kaggle.com/datasets/jessicali9530/stanford-cars-dataset
   Aircraft: https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
   Cub-200-2011: https://data.caltech.edu/records/65de6-vp158

3. Training

python vanilla_w_SNSCL.py  --dataset {dog, car, aircraft, cub}
                           --loss {ce_loss, APL, Asym, GCE, Sym, label_smooth, confPenalty}
                           --batch_size 64
                           --lr 0.002
                           --noise_type sym
                           --noise_r 0.2
                           --gpu 0

Some training records can be found in Google drive.

Contact

If you have any problem about our code, feel free to contact 1998v7@gmail.com

Cite

If you find the code useful, please consider citing our paper:

@inproceedings{wei2023fine,
  title={Fine-grained classification with noisy labels},
  author={Wei, Qi and Feng, Lei and Sun, Haoliang and Wang, Ren and Guo, Chenhui and Yin, Yilong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11651--11660},
  year={2023}
}