A "Clean and Hygienic" LLaMA Playground, Play LLaMA with 7GB (int8) 10GB (pyllama) or 20GB (official) of VRAM.
At the same time, it provides Alpaca LoRA one-click running Docker image, which can finetune 7B / 65B models.
To use this project, we need to do two things:
- the first thing is to download the model
- (you can download the LLaMA models from anywhere)
- and the second thing is to build the image with the docker
- (saves time compared to downloading from Docker Hub)
Taking the smallest model as an example, you need to place the model related files like this:
.
└── models
├── 65B
│ ├── checklist.chk
│ ├── consolidated.00.pth
│ ├── consolidated.01.pth
│ ├── consolidated.02.pth
│ ├── consolidated.03.pth
│ ├── consolidated.04.pth
│ ├── consolidated.05.pth
│ ├── consolidated.06.pth
│ ├── consolidated.07.pth
│ └── params.json
├── 30B
│ ├── consolidated.00.pth
│ ├── consolidated.01.pth
│ ├── consolidated.02.pth
│ ├── consolidated.03.pth
│ └── params.json
├── 13B
│ ├── consolidated.00.pth
│ ├── consolidated.01.pth
│ └── params.json
├── 7B
│ ├── consolidated.00.pth
│ └── params.json
└── tokenizer.model
If you prefer to use the official authentic model, build the docker image with the following command:
docker build -t soulteary/llama:llama . -f docker/Dockerfile.llama
If you wish to use a model with lower memory requirements, build the docker image with the following command:
docker build -t soulteary/llama:pyllama . -f docker/Dockerfile.pyllama
If you wish to use a model with the minimum memory requirements, build the docker image with the following command:
docker build -t soulteary/llama:int8 . -f docker/Dockerfile.int8
If you wish to fine-tune a model(7B-65B) with the minimum memory requirements, build the docker image with the following command:
# single GPU
docker build -t soulteary/llama:alpaca-lora-finetune . -f docker/Dockerfile.lora-finetune
# multiple GPU
docker build -t soulteary/llama:alpaca-lora-65b-finetune . -f docker/Dockerfile.lora-65b-finetune
For official model docker images (7B almost 21GB), use the following command:
docker run --gpus all --ipc=host --ulimit memlock=-1 -v `pwd`/models:/app/models -p 7860:7860 -it --rm soulteary/llama:llama
For lower memory requirements (7B almost 13GB) docker images, use the following command:
docker run --gpus all --ipc=host --ulimit memlock=-1 -v `pwd`/models:/llama_data -p 7860:7860 -it --rm soulteary/llama:pyllama
For the minimum memory requirements (7B almost 7.12GB) docker images, use the following command:
docker run --gpus all --ipc=host --ulimit memlock=-1 -v `pwd`/models:/app/models -p 7860:7860 -it --rm soulteary/llama:int8
For fine-tune, read this documentation.
Follow the rules of the game and be consistent with the original project.