Code for the VISAPP'23 paper 'Tackling Data Bias in Painting Classification with Style Transfer'.
The datasets can be downloaded using the link:
https://drive.google.com/drive/folders/1j7nIQzmoXBm2GLPt3EJ0odl8IvLZgizo?usp=share_link
unzip kaokore_control_v1.zip
unzip kaokore_imagenet_style.zip
Pytorch
Pytorch Lightning
Wandb
The datasets should be outside the repository if downloaded from the google drive link.
python pytorch-AdaIN/train.py --save_dir models --max_iter 20000
python pytorch-AdaIN/test.py --decoder models/decoder_iter_20000_kaokore_stylized.pth
python train_test.py
attention.py has been adapted from https://github.com/0aqz0/pytorch-attention-mechanism.git
pytorch-AdaIN has been adapted from https://github.com/naoto0804/pytorch-AdaIN.git
If you use our code or data, please cite:
@inproceedings{mridula2023tackling,
title={Tackling Data Bias in Painting Classification with Style Transfer},
author={Vijendran, Mridula and Li, Frederick W. B. and Shum, Hubert P. H.},
booktitle={International Conference on Computer Vision Theory and Applications (VISAPP)},
year={2023}
}