aims
任务描述:
参赛者需要使用京东多个品类下商品的历史销售数据,构建算法模型,预测用户在未来5天内,对某个目标品类下商品的购买意向。对于训练集中出现的每一个用户,参赛者的模型需要预测该用户在未来5天内是否购买目标品类下的商品以及所购买商品的SKU_ID。评测算法将针对参赛者提交的预测结果,计算加权得分。
To download data:
ipython notebook for data exploration and data transformation
package used: pandas, numpy, matplotlib, sklearn
First predict customers that will make a purchase. Then use their history to predict products that they will get.
Users can be classified into
User behavior follows poisson distribution, for behavior type
Assuming that the prior probability for a user in any group is equal, then Bayesian probability for user in group j is given as, $$ P(user in group j|behavior) = \frac{P(behavior|user in group j)}{\sum_k {P(behavior|user in group k)}} $$
Assuming that the effect of an action generates an exponential impulse of
The algorithm alternatively updates P(purchase|behavior i) or
Update is performed with momentum
Test is performed at every 100 iterations, to evaulate error.