This is an unofficial TensorFlow implementation of DARK Pose (Distribution Aware Coordinate Representation for Human Pose Estimation).
It is based on the official PyTorch implementation ilovepose/DarkPose.
- Python 3.7
- TensorFlow 2.1
- Create an anaconda environment.
conda create -n tf-dark-pose python=3.7 anaconda
- Activate the environment.
conda activate tf-dark-pose
- Install pip packages.
pip install -r requirements.txt
- Download the images and annotation files (2017 train/val) from https://cocodataset.org/#download. Place the data in a directory structure as the following:
${COCO_ROOT}
├── images
| ├── train2017
| | ├── 000000000009.jpg
| │ ├── ...
| │
| └── val2017
| ├── 000000000139.jpg
| ├── ...
|
└── annotations
├── person_keypoints_train2017.json
└── person_keypoints_val2017.json
- Train the model.
python train.py configs/res50_128x96_d256x3_adam_lr1e-3.yaml --dataset_root ${COCO_ROOT}