Warning
This repogitory is work in progress.
This repository is the ONNX inference code for the XMem tracker model included in Track-Anything.
source: https://github.com/gaomingqi/Track-Anything/tree/master/test_sample
name | version |
---|---|
os | windows 10 |
cuda | 11.8 |
python | 3.10.15 |
uv | 0.4.20 |
git clone https://github.com/5PB-3-4/XMem_ONNX.git
Check out requirement.txt.
Please convert models before Inference.
# Run
cd XMem_ONNX
python eval_1object.py --encode_key export/XMem-encode_key.onnx --encode_value export/XMem-encode_value-m1.onnx --decode export/XMem-decode-m1.onnx
# Parser option
python eval_1object.py -h
Tip
Only one object can be cut from this repository. If you want to cut out multiple objects, rewrite this.
# eval_1object.py
_, best_mask = cv2.threshold(masks, 10, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)