/Chinese-UFLDL-Tutorial

[UNMAINTAINED]非监督特征学习与深度学习中文教程,该版本翻译自新版 UFLDL Tutorial 。建议新人们去学习斯坦福的CS231n课程,该门课程在网易云课堂上也有一个配有中文字幕的版本。

Apache License 2.0Apache-2.0

注意:这个项目我不再维护,我觉得我的翻译真的不够好来帮助其他人,尤其是那些刚入门或者刚开始学习了解深度学习、神经网络的人们。为了不误导其他人,我建议新人们去学习斯坦福的CS231n课程,该门课程在网易云课堂上也有一个配有中文字幕的版本。 Have fun!

为了极佳的阅读体验,您可点击 这里 将本文档下载到本地,并安装 Haroopad 进行阅读。

非监督特征学习与深度学习 中文教程

中文版的新版 UFLDL 教程(项目地址: www.github.com/ysh329/Chinese-UFLDL-Tutorial ),该版本翻译自 UFLDL Tutorial ,是新版教程的翻译。也可参考 旧版 UFLDL 中文教程 。翻译过程中有一些数学公式,使用 Haroopad 编辑和排版, Haroopad 是一个优秀的离线 MarkDown 编辑器,支持 TeX 公式编辑,支持多平台(Win/Mac/Linux),目前还在翻译中,翻译完成后会考虑使用 TeX 重新排版。

自己对新版 UFLDL 教程翻译过程中,发现的英文错误,见 新版教程英文原文勘误表

注: UFLDL 是非监督特征学习及深度学习(Unsupervised Feature Learning and Deep Learning)的缩写,而不仅指深度学习(Deep Learning)。

  • 翻译者:Shuai Yuan ,部分小节参考旧版翻译进行修正和补充。
  • 若有翻译错误,请直接 New issue发邮件 ,感谢!

更多详细参考资料,见 计算机科学人工智能机器学习深度学习强化学习深度强化学习公开数据集

欢迎来到新版 UFLDL 中文教程!

说明:本教程将会教给您非监督特征学习以及深度学习的主要**。通过它,您将会实现几个特征学习或深度学习的算法,看到这些算法为您(的工作)带来作用,以及学习如何将这些**应用到适用的新问题上。

本教程假定您已经有了基本的机器学习知识(具体而言,熟悉监督学习,逻辑斯特回归以及梯度下降法的**)。如果您不熟悉这些,我们建议您先去 机器学习课程 中去学习,并完成其中的第II,III,IV章节(即到逻辑斯特回归)。

材料由以下人员提供:Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen, Adam Coates, Andrew Maas, Awni Hannun, Brody Huval, Tao Wang, Sameep Tandon

获取初学者代码(Starter Code)

初学者代码

您可以获得初学者所有练习的代码从 该Github的代码仓库

有关的数据文件可以从 这里 下载。 下载到的数据需要解压到名为“common”的文件夹中(以便初学者代码的使用)。

目录

每个小节后面的[old][new][旧]分别代表:旧版英文、新版英文、旧版中文三个版本。若没有对应的版本则用[无]代替。