This project is currently in alpha. The API should be considered unstable and likely to change
PGV is a protoc plugin to generate polyglot message validators. While protocol buffers effectively guarantee the types of structured data, they cannot enforce semantic rules for values. This plugin adds support to protoc-generated code to validate such constraints.
Developers import the PGV extension and annotate the messages and fields in their proto files with constraint rules:
syntax = "proto3";
package examplepb;
import "validate/validate.proto";
message Person {
uint64 id = 1 [(validate.rules).uint64.gt = 999];
string email = 2 [(validate.rules).string.email = true];
string name = 3 [(validate.rules).string = {
pattern: "^[^[0-9]A-Za-z]+( [^[0-9]A-Za-z]+)*$",
max_bytes: 256,
}];
Location home = 4 [(validate.rules).message.required = true];
message Location {
double lat = 1 [(validate.rules).double = { gte: -90, lte: 90 }];
double lng = 2 [(validate.rules).double = { gte: -180, lte: 180 }];
}
}
Executing protoc
with PGV and the target language's default plugin will create Validate
methods on the generated types:
p := new(Person)
err := p.Validate() // err: Id must be greater than 999
p.Id = 1000
err = p.Validate() // err: Email must be a valid email address
p.Email = "example@lyft.com"
err = p.Validate() // err: Name must match pattern '^[^\d\s]+( [^\d\s]+)*$'
p.Name = "Protocol Buffer"
err = p.Validate() // err: Home is required
p.Home = &Location{37.7, 999}
err = p.Validate() // err: Home.Lng must be within [-180, 180]
p.Home.Lng = -122.4
err = p.Validate() // err: nil
go
toolchain (≥ v1.7)protoc
compiler in$PATH
protoc-gen-validate
in$PATH
- official language-specific plugin for target language(s)
- Only
proto3
syntax is currently supported.proto2
syntax support is planned.
Installing PGV can currently only be done from source:
# fetches this repo into $GOPATH
go get -d github.com/envoyproxy/protoc-gen-validate
# installs PGV into $GOPATH/bin
make build
lang
: specify the target language to generate. Currently, the only supported options are:go
cc
for c++ (partially implemented)java
python
Go generation should occur into the same output path as the official plugin. For a proto file example.proto
, the corresponding validation code is generated into ../generated/example.pb.validate.go
:
protoc \
-I . \
-I ${GOPATH}/src \
-I ${GOPATH}/src/github.com/envoyproxy/protoc-gen-validate \
--go_out=":../generated" \
--validate_out="lang=go:../generated" \
example.proto
All messages generated include the new Validate() error
method. PGV requires no additional runtime dependencies from the existing generated code.
Note: by default example.pb.validate.go is nested in a directory structure that matches your option go_package
name. You can change this using the protoc parameter paths=source_relative:.
. Then --validate_out
will output the file where it is expected. See Google's protobuf documenation or packages and input paths or parameters for more information.
Java generation is integrated with the existing protobuf toolchain for java projects. For Maven projects, add the following to your pom.xml or build.gradle.
<dependencies>
<dependency>
<groupId> io.envoyproxy.protoc-gen-validate</groupId>
<artifactId>pgv-java-stub</artifactId>
<version>${pgv.version}</version>
</dependency>
</dependencies>
<build>
<extensions>
<extension>
<groupId>kr.motd.maven</groupId>
<artifactId>os-maven-plugin</artifactId>
<version>1.4.1.Final</version>
</extension>
</extensions>
<plugins>
<plugin>
<groupId>org.xolstice.maven.plugins</groupId>
<artifactId>protobuf-maven-plugin</artifactId>
<version>0.5.0</version>
<configuration>
<protocArtifact>com.google.protobuf:protoc:${protoc.version}:exe:${os.detected.classifier}</protocArtifact>
</configuration>
<execution>
<id>protoc-java-pgv</id>
<goals>
<goal>compile-custom</goal>
</goals>
<configuration>
<pluginParameter>lang=java</pluginParameter>
<pluginId>java-pgv</pluginId>
<pluginArtifact>io.envoyproxy.protoc-gen-validate:protoc-gen-validate:${pgv.version}:exe:${os.detected.classifier}</pluginArtifact>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
plugins {
...
id "com.google.protobuf" version "0.8.6"
...
}
protobuf {
protoc {
artifact = "com.google.protobuf:protoc:3.5.1"
}
plugins {
javapgv {
artifact = "io.envoyproxy.protoc-gen-validate:protoc-gen-validate:0.1.0"
}
}
generateProtoTasks {
all()*.plugins {
javapgv {
option "lang=java"
}
}
}
}
// Create a validator index that reflectively loads generated validators
ValidatorIndex index = new ReflectiveValidatorIndex();
// Assert that a message is valid
index.validatorFor(message.getClass()).assertValid(message);
// Create a gRPC client and server interceptor to automatically validate messages (requires pgv-java-grpc module)
clientStub = clientStub.withInterceptors(new ValidatingClientInterceptor(index));
serverBuilder.addService(ServerInterceptors.intercept(svc, new ValidatingServerInterceptor(index)));
Since Python is a dynamically typed language, it works with JIT code generation. So protoc does not need to be run to generate code.
The file validate/validator.py
has a validate()
method which needs to be run with an instance of the proto you are validating.
You must install all the dependencies in the requirements.txt
before running the validator.
To run validate()
, do the following:
from validator import validate, FailedValidation
p = Person()
validate(p) # This should either return None or raise a ValidationFailed exception.
To see what code has been generated and run, you can do the following:
from validator import validate, print_validate, FailedValidation
p = Person()
validate(p)
printer = print_validate(p)
The provided constraints are modeled largerly after those in JSON Schema. PGV rules can be mixed for the same field; the plugin ensures the rules applied to a field cannot contradict before code generation.
Check the constraint rule comparison matrix for language-specific constraint capabilities.
All numeric types (
float
,double
,int32
,int64
,uint32
,uint64
,sint32
,sint64
,fixed32
,fixed64
,sfixed32
,sfixed64
) share the same rules.
-
const: the field must be exactly the specified value.
// x must equal 1.23 exactly float x = 1 [(validate.rules).float.const = 1.23];
-
lt/lte/gt/gte: these inequalities (
<
,<=
,>
,>=
, respectively) allow for deriving ranges in which the field must reside.// x must be less than 10 int32 x = 1 [(validate.rules).int32.lt = 10]; // x must be greater than or equal to 20 uint64 x = 1 [(validate.rules).uint64.gte = 20]; // x must be in the range [30, 40) fixed32 x = 1 [(validate.rules).fixed32 = {gte:30, lt: 40}];
Inverting the values of
lt(e)
andgt(e)
is valid and creates an exclusive range.// x must be outside the range [30, 40) double x = 1 [(validate.rules).double = {lt:30, gte:40}];
-
in/not_in: these two rules permit specifying white/blacklists for the values of a field.
// x must be either 1, 2, or 3 uint32 x = 1 [(validate.rules).uint32 = {in: [1,2,3]}]; // x cannot be 0 nor 0.99 float x = 1 [(validate.rules).float = {not_in: [0, 0.99]}];
-
const: the field must be exactly the specified value.
// x must be set to true bool x = 1 [(validate.rules).bool.const = true]; // x cannot be set to true bool x = 1 [(validate.rules).bool.const = false];
-
const: the field must be exactly the specified value.
// x must be set to "foo" string x = 1 [(validate.rules).string.const = "foo"];
-
len/min_len/max_len: these rules constrain the number of characters (Unicode code points) in the field. Note that the number of characters may differ from the number of bytes in the string. The string is considered as-is, and does not normalize.
// x must be exactly 5 characters long string x = 1 [(validate.rules).string.len = 5]; // x must be at least 3 characters long string x = 1 [(validate.rules).string.min_len = 3]; // x must be between 5 and 10 characters, inclusive string x = 1 [(validate.rules).string = {min_len: 5, max_len: 10}];
-
min_bytes/max_bytes: these rules constrain the number of bytes in the field.
// x must be at most 15 bytes long string x = 1 [(validate.rules).string.max_bytes = 15]; // x must be between 128 and 1024 bytes long string x = 1 [(validate.rules).string = {min_bytes: 128, max_bytes: 1024}];
-
pattern: the field must match the specified RE2-compliant regular expression. The included expression should elide any delimiters (ie,
/\d+/
should just be\d+
).// x must be a non-empty, case-insensitive hexadecimal string string x = 1 [(validate.rules).string.pattern = "(?i)^[0-9a-f]+$"];
-
prefix/suffix/contains/not_contains: the field must contain the specified substring in an optionally explicit location, or not contain the specified substring.
// x must begin with "foo" string x = 1 [(validate.rules).string.prefix = "foo"]; // x must end with "bar" string x = 1 [(validate.rules).string.suffix = "bar"]; // x must contain "baz" anywhere inside it string x = 1 [(validate.rules).string.contains = "baz"]; // x cannot contain "baz" anywhere inside it string x = 1 [(validate.rules).string.not_contains = "baz"]; // x must begin with "fizz" and end with "buzz" string x = 1 [(validate.rules).string = {prefix: "fizz", suffix: "buzz"}]; // x must end with ".proto" and be less than 64 characters string x = 1 [(validate.rules).string = {suffix: ".proto", max_len:64}];
-
in/not_in: these two rules permit specifying white/blacklists for the values of a field.
// x must be either "foo", "bar", or "baz" string x = 1 [(validate.rules).string = {in: ["foo", "bar", "baz"]}]; // x cannot be "fizz" nor "buzz" string x = 1 [(validate.rules).string = {not_in: ["fizz", "buzz"]}];
-
well-known formats: these rules provide advanced constraints for common string patterns. These constraints will typically be more permissive and performant than equivalent regular expression patterns, while providing more explanatory failure descriptions.
// x must be a valid email address (via RFC 1034) string x = 1 [(validate.rules).string.email = true]; // x must be a valid address (IP or Hostname). string x = 1 [(validate.rules).string.address = true]; // x must be a valid hostname (via RFC 1034) string x = 1 [(validate.rules).string.hostname = true]; // x must be a valid IP address (either v4 or v6) string x = 1 [(validate.rules).string.ip = true]; // x must be a valid IPv4 address // eg: "192.168.0.1" string x = 1 [(validate.rules).string.ipv4 = true]; // x must be a valid IPv6 address // eg: "fe80::3" string x = 1 [(validate.rules).string.ipv6 = true]; // x must be a valid absolute URI (via RFC 3986) string x = 1 [(validate.rules).string.uri = true]; // x must be a valid URI reference (either absolute or relative) string x = 1 [(validate.rules).string.uri_ref = true]; // x must be a valid UUID (via RFC 4122) string x = 1 [(validate.rules).string.uuid = true]; // x must conform to a well known regex for HTTP header names (via RFC 7230) string x = 1 [(validate.rules).string.well_known_regex = HTTP_HEADER_NAME] // x must conform to a well known regex for HTTP header values (via RFC 7230) string x = 1 [(validate.rules).string.well_known_regex = HTTP_HEADER_VALUE]; // x must conform to a well known regex for headers, disallowing \r\n\0 characters. string x = 1 [(validate.rules).string {well_known_regex: HTTP_HEADER_VALUE, strict: false}];
Literal values should be expressed with strings, using escaping where necessary.
-
const: the field must be exactly the specified value.
// x must be set to "foo" ("\x66\x6f\x6f") bytes x = 1 [(validate.rules).bytes.const = "foo"]; // x must be set to "\xf0\x90\x28\xbc" bytes x = 1 [(validate.rules).bytes.const = "\xf0\x90\x28\xbc"];
-
len/min_len/max_len: these rules constrain the number of bytes in the field.
// x must be exactly 3 bytes bytes x = 1 [(validate.rules).bytes.len = 3]; // x must be at least 3 bytes long bytes x = 1 [(validate.rules).bytes.min_len = 3]; // x must be between 5 and 10 bytes, inclusive bytes x = 1 [(validate.rules).bytes = {min_len: 5, max_len: 10}];
-
pattern: the field must match the specified RE2-compliant regular expression. The included expression should elide any delimiters (ie,
/\d+/
should just be\d+
).// x must be a non-empty, ASCII byte sequence bytes x = 1 [(validate.rules).bytes.pattern = "^[\x00-\x7F]+$"];
-
prefix/suffix/contains: the field must contain the specified byte sequence in an optionally explicit location.
// x must begin with "\x99" bytes x = 1 [(validate.rules).bytes.prefix = "\x99"]; // x must end with "buz\x7a" bytes x = 1 [(validate.rules).bytes.suffix = "buz\x7a"]; // x must contain "baz" anywhere inside it bytes x = 1 [(validate.rules).bytes.contains = "baz"];
-
in/not_in: these two rules permit specifying white/blacklists for the values of a field.
// x must be either "foo", "bar", or "baz" bytes x = 1 [(validate.rules).bytes = {in: ["foo", "bar", "baz"]}]; // x cannot be "fizz" nor "buzz" bytes x = 1 [(validate.rules).bytes = {not_in: ["fizz", "buzz"]}];
-
well-known formats: these rules provide advanced constraints for common patterns. These constraints will typically be more permissive and performant than equivalent regular expression patterns, while providing more explanatory failure descriptions.
// x must be a valid IP address (either v4 or v6) in byte format bytes x = 1 [(validate.rules).bytes.ip = true]; // x must be a valid IPv4 address in byte format // eg: "\xC0\xA8\x00\x01" bytes x = 1 [(validate.rules).bytes.ipv4 = true]; // x must be a valid IPv6 address in byte format // eg: "\x20\x01\x0D\xB8\x85\xA3\x00\x00\x00\x00\x8A\x2E\x03\x70\x73\x34" bytes x = 1 [(validate.rules).bytes.ipv6 = true];
All literal values should use the numeric (int32) value as defined in the enum descriptor.
The following examples use this State
enum
enum State {
INACTIVE = 0;
PENDING = 1;
ACTIVE = 2;
}
-
const: the field must be exactly the specified value.
// x must be set to ACTIVE (2) State x = 1 [(validate.rules).enum.const = 2];
-
defined_only: the field must be one of the specified values in the enum descriptor.
// x can only be INACTIVE, PENDING, or ACTIVE State x = 1 [(validate.rules).enum.defined_only = true];
-
in/not_in: these two rules permit specifying white/blacklists for the values of a field.
// x must be either INACTIVE (0) or ACTIVE (2) State x = 1 [(validate.rules).enum = {in: [0,2]}]; // x cannot be PENDING (1) State x = 1 [(validate.rules).enum = {not_in: [1]}];
If a field contains a message and the message has been generated with PGV, validation will be performed recursively. Message's not generated with PGV are skipped.
// if Person was generated with PGV and x is set,
// x's fields will be validated.
Person x = 1;
-
skip: this rule specifies that the validation rules of this field should not be evaluated.
// The fields on Person x will not be validated. Person x = 1 [(validate.rules).message.skip = true];
-
required: this rule specifies that the field cannot be unset.
// x cannot be unset Person x = 1 [(validate.rules).message.required = true]; // x cannot be unset, but the validations on x will not be performed Person x = 1 [(validate.rules).message = {required: true, skip: true}];
-
min_items/max_items: these rules control how many elements are contained in the field
// x must contain at least 3 elements repeated int32 x = 1 [(validate.rules).repeated.min_items = 3]; // x must contain between 5 and 10 Persons, inclusive repeated Person x = 1 [(validate.rules).repeated = {min_items: 5, max_items: 10}]; // x must contain exactly 7 elements repeated double x = 1 [(validate.rules).repeated = {min_items: 7, max_items: 7}];
-
unique: this rule requires that all elements in the field must be unique. This rule does not support repeated messages.
// x must contain unique int64 values repeated int64 x = 1 [(validate.rules).repeated.unique = true];
-
items: this rule specifies constraints that should be applied to each element in the field. Repeated message fields also have their validation rules applied unless
skip
is specified on this constraint.// x must contain positive float values repeated float x = 1 [(validate.rules).repeated.items.float.gt = 0]; // x must contain Persons but don't validate them repeated Person x = 1 [(validate.rules).repeated.items.message.skip = true];
-
min_pairs/max_pairs: these rules control how many KV pairs are contained in this field
// x must contain at most 3 KV pairs map<string, uint64> x = 1 [(validate.rules).map.min_pairs = 3]; // x must contain between 5 and 10 KV pairs map<string, string> x = 1 [(validate.rules)].map = {min_pairs: 5, max_pairs: 10}]; // x must contain exactly 7 KV pairs map<string, Person> x = 1 [(validate.rules)].map = {min_pairs: 7, max_pairs: 7}];
-
no_sparse: for map fields with message values, setting this rule to true disallows keys with unset values.
// all values in x must be set map<uint64, Person> x = 1 [(validate.rules).map.no_sparse = true];
-
keys: this rule specifies constraints that are applied to the keys in the field.
// x's keys must all be negative <sint32, string> x = [(validate.rules).map.keys.sint32.lt = 0];
-
values: this rule specifies constraints that are be applied to each value in the field. Repeated message fields also have their validation rules applied unless
skip
is specified on this constraint.// x must contain strings of at least 3 characters map<string, string> x = 1 [(validate.rules).map.values.string.min_len = 3]; // x must contain Persons but doesn't validate them map<string, Person> x = 1 [(validate.rules).map.values.message.skip = true];
A set of WKTs are packaged with protoc and common message patterns useful in many domains.
In the proto3
syntax, there is no way of distinguishing between unset and the zero value of a scalar field. The value WKTs permit this differentiation by wrapping them in a message. PGV permits using the same scalar rules that the wrapper encapsulates.
// if it is set, x must be greater than 3
google.protobuf.Int32Value x = 1 [(validate.rules).int32.gt = 3];
Message Rules can also be used with scalar Well-Known Types (WKTs):
// Ensures that if a value is not set for age, it would not pass the validation despite its zero value being 0.
message X { google.protobuf.Int32Value age = 1 [(validate.rules).int32.gt = -1, (validate.rules).message.required = true]; }
-
required: this rule specifies that the field must be set
// x cannot be unset google.protobuf.Any x = 1 [(validate.rules).any.required = true];
-
in/not_in: these two rules permit specifying white/blacklists for the
type_url
value in this field. Consider using aoneof
union instead ofin
if possible.// x must not be the Duration or Timestamp WKT google.protobuf.Any x = 1 [(validate.rules).any = {not_in: [ "type.googleapis.com/google.protobuf.Duration", "type.googleapis.com/google.protobuf.Timestamp" ]}];
-
required: this rule specifies that the field must be set
// x cannot be unset google.protobuf.Duration x = 1 [(validate.rules).duration.required = true];
-
const: the field must be exactly the specified value.
// x must equal 1.5s exactly google.protobuf.Duration x = 1 [(validate.rules).duration.const = { seconds: 1, nanos: 500000000 }];
-
lt/lte/gt/gte: these inequalities (
<
,<=
,>
,>=
, respectively) allow for deriving ranges in which the field must reside.// x must be less than 10s google.protobuf.Duration x = 1 [(validate.rules).duration.lt.seconds = 10]; // x must be greater than or equal to 20ns google.protobuf.Duration x = 1 [(validate.rules).duration.gte.nanos = 20]; // x must be in the range [0s, 1s) google.protobuf.Duration x = 1 [(validate.rules).duration = { gte: {}, lt: {seconds: 1} }];
Inverting the values of
lt(e)
andgt(e)
is valid and creates an exclusive range.// x must be outside the range [0s, 1s) google.protobuf.Duration x = 1 [(validate.rules).duration = { lt: {}, gte: {seconds: 1} }];
-
in/not_in: these two rules permit specifying white/blacklists for the values of a field.
// x must be either 0s or 1s google.protobuf.Duration x = 1 [(validate.rules).duration = {in: [ {}, {seconds: 1} ]}]; // x cannot be 20s nor 500ns google.protobuf.Duration x = 1 [(validate.rules).duration = {not_in: [ {seconds: 20}, {nanos: 500} ]}];
-
required: this rule specifies that the field must be set
// x cannot be unset google.protobuf.Timestamp x = 1 [(validate.rules).timestamp.required = true];
-
const: the field must be exactly the specified value.
// x must equal 2009/11/10T23:00:00.500Z exactly google.protobuf.Timestamp x = 1 [(validate.rules).timestamp.const = { seconds: 63393490800, nanos: 500000000 }];
-
lt/lte/gt/gte: these inequalities (
<
,<=
,>
,>=
, respectively) allow for deriving ranges in which the field must reside.// x must be less than the Unix Epoch google.protobuf.Timestamp x = 1 [(validate.rules).timestamp.lt.seconds = 0]; // x must be greater than or equal to 2009/11/10T23:00:00Z google.protobuf.Timestamp x = 1 [(validate.rules).timestamp.gte.seconds = 63393490800]; // x must be in the range [epoch, 2009/11/10T23:00:00Z) google.protobuf.Timestamp x = 1 [(validate.rules).timestamp = { gte: {}, lt: {seconds: 63393490800} }];
Inverting the values of
lt(e)
andgt(e)
is valid and creates an exclusive range.// x must be outside the range [epoch, 2009/11/10T23:00:00Z) google.protobuf.Timestamp x = 1 [(validate.rules).timestamp = { lt: {}, gte: {seconds: 63393490800} }];
-
lt_now/gt_now: these inequalities allow for ranges relative to the current time. These rules cannot be used with the absolute rules above.
// x must be less than the current timestamp google.protobuf.Timestamp x = 1 [(validate.rules).timestamp.lt_now = true];
-
within: this rule specifies that the field's value should be within a duration of the current time. This rule can be used in conjunction with
lt_now
andgt_now
to control those ranges.// x must be within ±1s of the current time google.protobuf.Timestamp x = 1 [(validate.rules).timestamp.within.seconds = 1]; // x must be within the range (now, now+1h) google.protobuf.Timestamp x = 1 [(validate.rules).timestamp = { gt_now: true, within: {seconds: 3600} }];
-
disabled: All validation rules for the fields on a message can be nullified, including any message fields that support validation themselves.
message Person { option (validate.disabled) = true; // x will not be required to be greater than 123 uint64 x = 1 [(validate.rules).uint64.gt = 123]; // y's fields will not be validated Person y = 2; }
-
required: require that one of the fields in a
oneof
must be set. By default, none or one of the unioned fields can be set. Enabling this rules disallows having all of them unset.oneof id { // either x, y, or z must be set. option (validate.required) = true; string x = 1; int32 y = 2; Person z = 3; }
PGV is written in Go on top of the protoc-gen-star framework and compiles to a standalone binary.
All PGV dependencies are currently checked into the project. To test PGV, protoc
must be installed, either from source, the provided releases, or a package manager. The official protoc plugin for the target language(s) should be installed as well.
-
make build
: generates the constraints proto and compiles PGV into$GOPATH/bin
-
make lint
: runs static-analysis rules against the PGV codebase, includinggolint
,go vet
, andgofmt -s
-
make testcases
: generates the proto files in/tests/harness/cases
. These are used by the test harness to verify the validation rules generated for each language. -
make harness
: executes the test-cases against each language's test harness.
Ensure that your PATH
is setup to include protoc-gen-go
and protoc
, then:
bazel run //tests/harness/executor:executor
PGV comes with a Dockerfile for consistent development tooling and CI. The main entrypoint is make
with quick
as the default target. This repo should be volumed into /go/src/github.com/envoyproxy/protoc-gen-validate
for the proper behavior.
# build the image
docker build -t lyft/protoc-gen-validate .
# executes the default make target: quick
docker run --rm \
-v $(PWD):/go/src/github.com/envoyproxy/protoc-gen-validate \
lyft/protoc-gen-validate
# executes the 'build' & 'generate-testdata' make targets
docker run --rm \
-v $(PWD):/go/src/github.com/envoyproxy/protoc-gen-validate \
lyft/protoc-gen-validate \
build generate-testdata