/M2S-ADD

[InterSpeech'2023] "Betray Oneself: A Novel Audio DeepFake Detection Model via Mono-to-Stereo Conversion"

Primary LanguagePython

Betray Oneself: A Novel Audio DeepFake Detection Model via Mono-to-Stereo Conversion

Introduction

This is an implementation of the following paper.

Betray Oneself: A Novel Audio DeepFake Detection Model via Mono-to-Stereo Conversion. InterSpeech'2023

Rui Liu, Jinhua Zhang, Guanglai Gao, Haizhou Li.

Installation

First, clone the repository locally, create and activate a conda environment, and install the requirements :

$ conda create --name M2S-ADD python=3.8.8
$ conda activate M2S-ADD
$ conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia
$ pip install -r requirements.txt

Experiments

Dataset

Our experiments are done in the logical access (LA) partition of the ASVspoof 2019 dataset, which can can be downloaded from here.

Training

To train the model run:

python main.py 

Testing

To evaluate your own model on LA evaluation dataset:

python main.py --track=logical --loss=WCE --is_eval --eval --model_path='/path/to/your/best_model.pth' --eval_output='eval_CM_scores_file.txt'

If you would like to compute scores on development dataset simply run:

python main.py --track=logical --loss=WCE --eval --model_path='/path/to/your/best_model.pth' --eval_output='dev_CM_scores_file.txt'

Compute the min t-DCF and EER(%) on development dataset

python tDCF_python_v2/evaluate_tDCF_asvspoof19_eval_LA.py  dev  'dev_CM_scores_file.txt'

Compute the min t-DCF and EER(%) on evaluation dataset

python tDCF_python_v2/evaluate_tDCF_asvspoof19_eval_LA.py  Eval  'eval_CM_scores_file.txt'

Acknowledgements

This repository is built on RawGAT-ST-antispoofing.

Authors would like to acknowledge other repositories as well.

Contact

For any query regarding this repository, please contact:

Citation

If you use M2S-ADD for anti-spoofing please use the following citations:

@inproceedings{liu23v_interspeech,
  author={Rui Liu and Jinhua Zhang and Guanglai Gao and Haizhou Li},
  title={{Betray Oneself: A Novel Audio DeepFake Detection Model via Mono-to-Stereo Conversion}},
  year=2023,
  booktitle={Proc. INTERSPEECH 2023},
  pages={3999--4003},
  doi={10.21437/Interspeech.2023-2335}
}