/NonlinearDynamicsJC

Record of journal club for nonlinear dynamics of artificial/biological networks

Primary LanguageJupyter Notebook

NonlinearDynamicsJC

Record of journal club for nonlinear (& linear) dynamics of artificial/biological networks

Papers read

2024

Luo, T. Z., Kim, T. D., Gupta, D., Bondy, A. G., Kopec, C. D., Elliot, V. A., DePasquale, B., & Brody, C. D. (2023). Transitions in dynamical regime and neural mode underlie perceptual decision-making. bioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2023.10.15.562427

Liu, Y., & Wang, X.-J. (2024). Flexible gating between subspaces in a neural network model of internally guided task switching. Nature Communications, 15(1), 6497.

Gilpin, W. (2024). Generative learning for nonlinear dynamics. Nature Reviews. Physics, 1–13.

Webb, T. W., Frankland, S. M., Altabaa, A., Segert, S., Krishnamurthy, K., Campbell, D., Russin, J., Giallanza, T., O’Reilly, R., Lafferty, J., & Cohen, J. D. (2024). The relational bottleneck as an inductive bias for efficient abstraction. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2024.04.001

Ogawa, S., Fumarola, F., & Mazzucato, L. (2023). Multitasking via baseline control in recurrent neural networks. Proceedings of the National Academy of Sciences, 120(33), e2304394120.

Keup, C., & Helias, M. (2022). Origami in N dimensions: How feed-forward networks manufacture linear separability. In arXiv [cs.LG]. arXiv. http://arxiv.org/abs/2203.11355

Wakhloo, A. J., Slatton, W., & Chung, S. (2024). Neural Population Geometry and Optimal Coding of Tasks with Shared Latent Structure. In arXiv [q-bio.NC]. arXiv. http://arxiv.org/abs/2402.16770

Riveland, R., & Pouget, A. (2024). Natural language instructions induce compositional generalization in networks of neurons. Nature Neuroscience, 1–12

Goudar, V., Peysakhovich, B., Freedman, D. J., Buffalo, E. A., & Wang, X.-J. (2023). Schema formation in a neural population subspace underlies learning-to-learn in flexible sensorimotor problem-solving. Nature Neuroscience. https://doi.org/10.1038/s41593-023-01293-9

Tafazoli, S., Bouchacourt, F. M., Ardalan, A., Markov, N. T., Uchimura, M., Mattar, M. G., Daw, N. D., & Buschman, T. J. (2024). Building compositional tasks with shared neural subspaces. In bioRxiv (p. 2024.01.31.578263). https://doi.org/10.1101/2024.01.31.578263

Whittington, J. C. R., Dorrell, W., Behrens, T. E. J., Ganguli, S., & El-Gaby, M. (2023). On prefrontal working memory and hippocampal episodic memory: Unifying memories stored in weights and activation slots. In bioRxiv (p. 2023.11.05.565662). https://doi.org/10.1101/2023.11.05.565662

2023

Driscoll, L., Shenoy, K., & Sussillo, D. (2022). Flexible multitask computation in recurrent networks utilizes shared dynamical motifs. In bioRxiv (p. 2022.08.15.503870). https://doi.org/10.1101/2022.08.15.503870

Miller, K. J., Eckstein, M., Botvinick, M. M., & Kurth-Nelson, Z. (2023). Cognitive model discovery via disentangled RNNs. In bioRxiv (p. 2023.06.23.546250). https://doi.org/10.1101/2023.06.23.546250

Liu, Z., Gan, E., & Tegmark, M. (n.d.). Seeing is believing: Brain-inspired modular training for mechanistic interpretability. Retrieved May 5, 2023, from https://kindxiaoming.github.io/pdfs/BIMT.pdf

Pals, M., Macke, J. H., & Barak, O. (2023). Trained recurrent neural networks develop phase-locked limit cycles in a working memory task. In bioRxiv (p. 2023.04.11.536352). https://doi.org/10.1101/2023.04.11.536352

Linsley, D., & Karkada Ashok, A. (2020). Stable and expressive recurrent vision models. Advances in. https://proceedings.neurips.cc/paper/2020/hash/766d856ef1a6b02f93d894415e6bfa0e-Abstract.html

Ji-An, L., Benna, M. K., & Mattar, M. G. (2023). Automatic Discovery of Cognitive Strategies with Tiny Recurrent Neural Networks. In bioRxiv (p. 2023.04.12.536629). https://doi.org/10.1101/2023.04.12.536629

Galgali, A. R., Sahani, M., & Mante, V. (2023). Residual dynamics resolves recurrent contributions to neural computation. Nature Neuroscience. https://doi.org/10.1038/s41593-022-01230-2

Beiran, M., Meirhaeghe, N., Sohn, H., Jazayeri, M., & Ostojic, S. (2023). Parametric control of flexible timing through low-dimensional neural manifolds. Neuron. https://doi.org/10.1016/j.neuron.2022.12.016

Tkačik, G., Marre, O., Amodei, D., Schneidman, E., Bialek, W., & Berry, M. J., 2nd. (2014). Searching for collective behavior in a large network of sensory neurons. PLoS Computational Biology, 10(1), e1003408.

Mastrogiuseppe, F., & Ostojic, S. (2018). Linking connectivity, dynamics, and computations in low-rank recurrent neural networks. Neuron, 99(3), 609–623.e29.

Smith, J. T. H., Linderman, S. W., & Sussillo, D. (2021). Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems. In arXiv [cs.LG]. arXiv. https://proceedings.neurips.cc/paper/2021/file/8b77b4b5156dc11dec152c6c71481565-Paper.pdf

Ratzon, A., Derdikman, D., & Barak, O. (2023). Representational drift as a result of implicit regularization. In bioRxiv (p. 2023.05.04.539512). https://doi.org/10.1101/2023.05.04.539512

RNNs strike back https://adrian-valente.github.io/2023/10/03/linear-rnns.html

Fortunato, C., Bennasar-Vázquez, J., Park, J., Chang, J. C., Miller, L. E., Dudman, J. T., Perich, M. G., & Gallego, J. A. (2023). Nonlinear manifolds underlie neural population activity during behaviour. In bioRxiv (p. 2023.07.18.549575). https://doi.org/10.1101/2023.07.18.549575

Durstewitz, D., Koppe, G., & Thurm, M. I. (2023). Reconstructing computational system dynamics from neural data with recurrent neural networks. Nature Reviews. Neuroscience. https://doi.org/10.1038/s41583-023-00740-7

Lake, B. M., & Baroni, M. (2023). Human-like systematic generalization through a meta-learning neural network. Nature. https://doi.org/10.1038/s41586-023-06668-3

2022

Sussillo, D., & Barak, O. (2013). Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Computation, 25(3), 626–649.

Pollock, E., & Jazayeri, M. (2020). Engineering recurrent neural networks from task-relevant manifolds and dynamics. PLoS Computational Biology, 16(8), e1008128.

Jaffe, P. I., Poldrack, R. A., Schafer, R. J., & Bissett, P. G. (2022). Discovering dynamical models of human behavior. In bioRxiv (p. 2022.03.20.484666). https://doi.org/10.1101/2022.03.20.484666

Kingma, D. P., & Welling, M. (2019). An Introduction to Variational Autoencoders. In arXiv [cs.LG]. arXiv. http://arxiv.org/abs/1906.02691

Flesch, T., Nagy, D. G., Saxe, A., & Summerfield, C. (2022). Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals. In arXiv [q-bio.NC]. arXiv. http://arxiv.org/abs/2203.11560

Bouchacourt, F., Palminteri, S., Koechlin, E., & Ostojic, S. (2020). Temporal chunking as a mechanism for unsupervised learning of task-sets. eLife, 9. https://doi.org/10.7554/eLife.50469

Disentangling with Biological Constraints: A Theory of Functional Cell Types: https://arxiv.org/abs/2210.01768

Superposition: https://transformer-circuits.pub/2022/toy_model/index.html:

Rajalingham, R., Piccato, A., & Jazayeri, M. (2022). Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task. Nature Communications, 13(1), 5865.

Pagan, M., Tang, V. D., Aoi, M. C., Pillow, J. W., Mante, V., Sussillo, D., & Brody, C. D. (2022). A new theoretical framework jointly explains behavioral and neural variability across subjects performing flexible decision-making. In bioRxiv (p. 2022.11.28.518207). https://doi.org/10.1101/2022.11.28.518207